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Introduction. Acute lung injury (ALI) induced by sepsis is a process related to inflammatory reactions, which involves lung cell
apoptosis and production of inflammatory cytokine. Here, lipopolysaccharide (LPS) was applied to stimulate the mouse or
human normal lung epithelial cell line (BEAS-2B) to construct a sepsis model in vivo and in vitro, and we also investigated the
effect of miR-497-5p on sepsis-induced ALI. Material and Methods. Before LPS treatment, miR-497-5p antagomir was injected
intravenously into mice to inhibit miR-497-5p expression in vivo. Similarly, miR-497-5p was knocked down in BEAS-2B cells.
Luciferase reporter assay was applied to predict and confirm the miR-497-5p target gene. Cell viability, apoptosis, the levels of
miR-497-5p, IL2RB, SP1, inflammatory cytokine, and lung injury were assessed. Results. In BEAS-2B cells, a significant increase
of apoptosis and inflammatory cytokine was shown after LPS stimulation. In septic mice, increased inflammatory cytokine
production and apoptosis in lung cells and pulmonary morphological abnormalities were shown. The miR-497-5p inhibitor
transfection showed antiapoptotic and anti-inflammatory effects on BEAS-2B cells upon LPS stimulation. In septic mice, the
miR-497-5p antagomir injection also alleviated ALI, apoptosis, and inflammation caused by sepsis. The downregulation of
IL2RB in BEAS-2B cells reversed the protective effects of the miR-497-5p inhibitor against ALI. Conclusion. In conclusion,
downregulation of miR-497-5p reduced ALI caused by sepsis through targeting IL2RB, indicating the potential effect of miR-
497-5p for improving ALI caused by sepsis.

1. Introduction

Sepsis is one of the most complex systemic inflammatory
response syndromes caused by infection, which cause multi-
ple organ dysfunction and eventually lead to death [1, 2]. The
lung is actually the first organ to respond to sepsis [3]. Acute
lung injury (ALI) induced by severe sepsis [4] is actually lung
cell apoptosis caused by inflammation [5]. And studies found
that ALI caused by sepsis led to a higher mortality rate [6].
However, there is currently no available pharmacologic ther-
apy that can reduce the mortality rate of ALI patients. There-
fore, it is essential to find the effective treatment of ALI.

miRNAs refer to small noncoding RNAs that are
involved in the regulation of cell development, immunity,
proliferation, metabolism, and apoptosis [7]. Recent works
have demonstrated that miRNAs are devoted to both
inflammation-induced apoptosis and sepsis-induced ALI
processes [8]. The knockdown of miR-199a served to protect
lung tissue from acute respiratory distress syndrome caused
by sepsis through inhibiting excessive inflammation [9].
miR-145 reduced sepsis-induced lung injury by suppres-
singTGFBR2 signal transduction [10]. Therefore, the study
for the regulatory role of miRNA in sepsis-induced ALI is
of vital importance.
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miR-497-5p was a member of the miR-15/16 family [11].
And miR-15a and miR-16 of the miR-15/16 family were ver-
ified to be upregulated in the serum of neonatal sepsis
patients and inhibited inflammation induced by lipopolysac-
charide (LPS) [12]. Growing evidence had shown that miR-
497-5p was involved in melanoma [13], gastric cancer [14],
and esophageal squamous cell carcinoma and hepatocellular
carcinoma [15, 16]. Besides, it was reported that miR-497-5p
regulated inflammation-related signaling pathways in hepa-
tocellular carcinoma [17]. However, the correlation between
miR-497-5p in ALI induced by sepsis is unclear.

IL-2 is essential for regulating immune response, and
IL2RB is a subunit of the IL-2 receptor (IL-2R). As an
inflammation-related gene [18], the absence of IL2RB in
humans or mice leads to immune disorder [19]. Studies
had reported that IL2RB played a role in inflammatory dis-
eases such as lung cancer [20, 21], atopic dermatitis [22],
and steatohepatitis [23]. Also, IL2RB was negatively corre-
lated with Sequential Organ Failure Assessment (SOFA)
and mortality of sepsis [24]. However, the role of IL2RB in
the regulatory mechanism of ALI caused by sepsis is unclear.

In this research, we demonstrated that low expression of
miR-497-5p exerted a crucial role in protecting ALI caused
by sepsis. Additionally, low expression of miR-497-5p had
been shown to protect lung tissue by targeting upregulation
of IL2RB. These findings supported the idea that the poten-
tial treatment capacity of miR-497-5p in ALI is caused by
sepsis and provided a potential novel strategy for treating
ALI induced by sepsis.

2. Materials and Methods

2.1. Data Acquisition and Bioinformatics Analysis. The
miRNA (normal: 8; sepsis: 10) and mRNA (normal: 20;
sepsis: 10) expression profiles related to sepsis were from
the GEO database, and the Limma package was applied
to analyze the differential (|logFC ∣ >2, padj < 0:05 were
set as the threshold). The target miRNA was then targeted
and predicted by FunRich (version 3.13), and the target
gene was obtained by taking the intersection with the dif-
ferential mRNAs. The transcription factor that regulated
the target miRNA was predicted, and the target miRNA
promoter region (2000 bp before the transcription start
position) and the binding sequences with the transcription
factor were predicted.

2.2. Sepsis-Induced Acute Lung Injury Mouse Model. Experi-
ments were conducted under the guidelines of the Adminis-
tration of Animal Experiments for Medical Research
Purposes and Animal Ethics. Adult male C57BL/6 mice
(28-32 g) were applied as experimental models. After the
mice were fixed on the operating table, 1% pentobarbital 5-
6ml/kg was intraperitoneally injected into mice for anesthe-
sia. The neck was cut longitudinally in the middle to expose
the trachea. LPS (4ml/kg, Sigma-Aldrich) was injected into
the trachea and absorbed fully when the mice were shaken,
and then the incision was sutured. Lung tissues and blood
of sacrificed mice were collected for subsequent detection.
Mice were divided into 4 groups randomly: sham-operation

group, LPS group (sepsis model group), LPS+miR-497-5p
antagomir group, and LPS+NC antagomir group. The tail
vein injection of miR-497-5p antagomir or NC antagomir
(GenePharma) was performed 15min before LPS treatment.

2.3. H&E Staining. After being fixated in 4% paraformalde-
hyde, dehydrated, and paraffin embedded, the tissue was
sliced into 5μm thick sections. After hydrating by xylene,
the sections were immersed in anhydrous ethanol. Then,
hematoxylin and eosin (H&E) was used to stain the sections
[25]. The degree of lung injury was assessed by researchers
blinded to the experiment.

2.4. Cell Culture and Transfection. The human normal lung
epithelial cell line BEAS-2B (cell bank of Chinese Academy
of Sciences of China) was cultured in DMEM (Gibco) con-
taining 10% heat-inactivated FBS (Gibco) in a 37°C humidi-
fied atmosphere with 5% CO2. miR-497-5p mimic, miR-497-
5p inhibitor, si-SP1, pcDNA3.1-SP1, si-IL2RB, and corre-
sponding control were synthesized and transfected into
BEAS-2B cells by Lipofectamine 2000 (Invitrogen). Cells
were stimulated with LPS for constructing an in vitro model
after transfection.

2.5. Luciferase Reporter Analysis. For miRNA target gene val-
idation, the IL2RB 3′-UTR fragment with the miR-497-5p
putative binding site was cloned the luciferase gene down-
stream in pmirGlo vector (GenePharma). The mutant
IL2RB 3′-UTR was applied to build a mut vector of
IL2RB. Cells were treated with miR-497-5p mimic (or
NC mimic) and IL2RB-wt (or IL2RB-mut). For miRNA
transcription factor validation, SP1 putative binding sites
on the miR-497-5p promoter region (BS1 and BS2) cloned
the luciferase gene downstream in the pmirGlo vector.
Cells were treated with pcDNA3.1-SP1 (or pcDNA3.1)
and BS1-wt (or BS1-mut) or BS2-wt (or BS2-mut). Then,
luciferase activity was examined.

2.6. Quantitative Real-Time PCR (qRT-PCR). Firstly, TRIzol
(Beyotime, Shanghai) was devoted to extract total RNA from
tissues and cells based on the manufacturer’s recommenda-
tion. Then, a one-step miRNA RT kit (Haigene, Harbin) or
BeyoRT™ First Strand cDNA Synthesis Kit (Beyotime,
Shanghai) was used to reversely transcribe complementary
DNA (cDNA) for miRNAs or mRNAs, respectively. Next, a
Hieff Unicon TaqMan multiplex qPCR master mix (Yeasen,
Shanghai) was applied to examine the levels of RNA by ABI
Prism 7500 Detection System (Applied Biosystems, USA).
GAPDH and U6 served as the internal control. The relative
expression of RNA was calculated by the 2-ΔΔct method.
The primer sequences are found in Table 1.

2.7. ELISA. Twenty-four hours after injection, the mice were
anesthetized with sodium pentobarbital (30mg/kg, intraper-
itoneal injection). After the mice were fixed, the eyeballs were
picked with optical tweezers for blood collection. And culture
supernatant of cells was collected. TNF-α, IL-1β, and IL-6 in
samples were determined by the ELISA kit (Abcam) follow-
ing the manufacturer’s protocols. The absorbance at 450nm
was recorded using a microplate reader.
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2.8. MTT Assay. Cells were incubated in a 96-well culture
plate with 0:5 × 104 cells/well for 48 h with 5% CO2 at 37
degrees. 20μl MTT (5μg/l, Boster, Wuhan) was then added
in the wells and cultured for 4 h. After that, 150μl DMSO
(Sigma-Aldrich) was added, and the absorbance at 490 nm
was measured by a microplate reader for cell proliferation.

2.9. Flow Cytometry. Briefly, BEAS-2B cells were cultured in
6-well plates followed by the treatment with LPS and trans-
fection. After 24 h, cells were collected, centrifuged, and
resuspended in buffer solution. Annexin V/PI double stain-
ing (BD Biosciences, USA) was used to detect the apoptosis
of cells, and then, cells were cultured in the dark for 15min.
BD FACS software (BD Biosciences, USA) was applied for
quantifying the apoptosis ratio.

2.10. Western Blot. In short [26], the total protein was
obtained by RIPA Lysis Buffer (Beyotime), separated, and
transferred to PVDF membranes. Then, primary antibodies
(Abcam) against Bcl-2 (1 : 000), Bax (1: 1000), cleaved
caspase-3 (1 : 500), caspase-3 (1 : 500), IL2RB (1 : 500), and
GAPDH (1 : 1000) were incubated on the membranes (4°C
overnight). And then, horseradish peroxidase-conjugated
secondary antibodies (1 : 3000) were incubated. All antibod-
ies were purchased from Abcam. The results were visualized
by ECL solution (Thermo Fisher Scientific).

2.11. Chromatin Immunoprecipitation (ChIP) Assay. EZ-
Magna ChIP G Chromatin Immunoprecipitation Kit (Milli-
pore, USA) was applied in this assay. In short, formaldehyde
was used to treat cells for 10min. The crosslinked chromatin
was prepared and subsequently sonicated to fragments 200 to
400-bp in length, and were immunoprecipitated with IgG
antibody (Negative control, Abcam) or SP1 antibody
(Abcam) for 2 h (4°C). The precipitated chromatin DNA

was eluted, reversed cross-links and treated with proteinase
K before qRT-PCR analysis.

2.12. Statistical Analysis. GraphPad Prism 8.0 was applied to
analyze the data. Each experiment was repeated in triplicate,
and data were expressed asmean ± SD. The statistical signif-
icances were assessed by Student’s t tests or one-way analysis
of variance with the Tukey-Kramer post hoc test. p < 0:05
represented a significant difference.

3. Results

3.1. Bioinformatics Predicted miR-497-5p and the Target
Genes. To determine the dysregulated miRNAs in sepsis,
miRNA and mRNA profiles were obtained using the GEO
database. Differentially expressed miRNAs (DEMs) and
mRNAs (DEGs) were screened by the Limma package, and
15 DEMs and 110 DEGs are shown in Figures 1(a)–1(d).
The target genes of DEMs were predicted using FunRich
(version 3.13), and the intersection of the predicted target
gene and DEGs was performed. Screened miRNA-target
pairs were based on the relationship between miRNA and
the target gene negative regulation (Figure 1(e)). The results
show that 2 miRNA-target pairs were predicted. Among
them, IL2RB had been proven to regulate inflammation in
other diseases [22–24]. Hence, miR-497-5p/IL2RB was
selected to validate its role in the alleviation of sepsis-
induced ALI.

3.2. miR-497-5p Was Upregulated in LPS-Treated BEAS-2B
Cells and Septic Mice. To explore the effect of miR-497-5p,
LPS-treated mice or BEAS-2B cells were employed to con-
struct sepsis-induced ALI in vivo and in vitro models, and
miR-497-5p expression was tested. The results in Figure 2
showed that LPS treatment significantly increased miR-497-
5p expressions of BEAS-2B cells and septic mice, illustrating
that miR-497-5p was upregulated by sepsis and sepsis-
induced inflammation.

3.3. Suppression of miR-497-5p Reduced LPS-Induced
Apoptosis and Inflammatory Cytokine Production in BEAS-
2B Cells. For the purpose of studying the effect of miR-497-
5p on ALI induced by sepsis, we synthesized the miR-497-
5p inhibitor and its control for cell transfection after LPS
treatment; miR-497-5p expression was remarkably reduced
(Figure 3(a)). MTT and flow cytometry results showed
decreased apoptosis and increased cell viability in LPS-
treated BEAS-2B cells after miR-497-5p inhibitor transfec-
tion (Figures 3(b) and 3(c)). Meanwhile, western blot results
also showed that the miR-497-5p inhibitor elevated Bcl-2
expression and lessened the expressions of Bax and cleaved
caspase-3 in BEAS-2B treated with LPS (Figure 3(d)). In
addition, the increase in the expression and content of
TNF-α, IL-1β, and IL-6 caused by LPS treatment was verified
by qRT-PCR and ELISA (Figures 3(e) and 3(f)) and was
reduced after miR-497-5p inhibitor transfection. The above
data suggested that miR-497-5p deficiency decreased apopto-
sis and attenuated the increase of inflammatory cytokines
caused by LPS.

Table 1: The primer sequence used in qRT-PCR.

IL-1β (forward) 5′-CTCCGACCACCACTACAGCAAG-3′
IL-1β (reverse) 5′-TGGGCAGGGAACCAGCATC-3′
TNF-α (forward) 5′-CCCGAGTGACAAGCCTGTAGCC-3′

TNF-α (reverse)
5′-CCCTTGAAGAGGACCTGGGAG

TAGAT-3′
IL-6 (forward) 5′-CAATGAGGAGACTTGCCTGGTG-3′
IL-6 (reverse) 5′-GCTGGCATTTGTGGTTGGG-3′
miR-497-5p (forward) 5′-CAGCAGCACTGTGGTTTGT-3′
miR-497-5p (reverse) 5′-CGACAGCAGCACACTGTGGTT-3′
SP1 (forward) 5′-TGGCAGCAGTACCAATGGC-3′
SP1 (reverse) 5′-CCAGGTAGTCCTGTCAGAACTT-3′
U6 (forward) 5′-CTCGCTTCGGCAGCACA-3′
U6 (reverse) 5′-AACGCTTCACGAATTTGCTTC-3′
GAPDH (forward) 5′-TCAAGGCTGAGAACGGGAAG-3′
GAPDH (reverse) 5′-TGGACTCCACGACGTACTCA-3-3′
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Figure 1: Bioinformatics predicted miR-497-5p and the target gene IL2RB. Volcano plots of DEMs (a) and heat map (b) analysis miRNA
expressions in sepsis or corresponding normal samples from GEO database. Volcano plots of DEGs (c) and heat map (d) analysis mRNA
expressions in sepsis or corresponding normal samples from GEO database. Volcano plot red dots: significantly highly expressed genes;
green dots: significantly poorly expressed genes. Heat map red: significantly highly expressed genes; green: significantly poorly expressed
genes. (e) The miRNA-target regulatory network. Triangles and circles represented miRNAs and target genes, respectively. Red
represented genes that were upregulated, and green represented genes that were downregulated.
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3.4. SP1 Regulated miR-497-5p Expression via Binding to Its
Promoter. To explore which transcript factor could play the
key role in promoting miR-497-5p expression, we searched
the database. The results showed that the SP1 level had the
most significant difference between the control and sepsis
groups among several transcription factors (Figure 4(a)).
SP1-binding sites in the miR-497-5p promoter sequence are
shown in Figure 4(b). Besides, qRT-PCR were applied to ver-
ify that si-SP1 was capable to reduce SP1 mRNA and miR-
497-5p levels, while pcDNA3.1-SP1 elevated SP1 mRNA
and miR-497-5p levels (Figure 4(c)). To determine the inter-
action, ChIP analysis was performed and the results revealed
that, among the binding sites of the miR-497-5p promoter,
the binding activity of SP1 at binding site 2 (BS2) was notably
increased (Figure 4(d)). And luciferase activity analysis
results validated that luciferase activities of cells with BS2
luciferase reporter plasmid transfection were remarkably
increased by SP1 overexpression (Figure 4(e)). Overall, these
above results validated that SP1 regulated miR-497-5p
expression in BEAS-2B cells.

3.5. miR-497-5p Regulated Targeted Gene IL2RB Expression.
IL2RB reduced inflammation [27]. Western blot results dis-
played that miR-497-5p inhibitor or mimic transfection
notably increased or inhibited IL2RB expression in BEAS-
2B cells (Figures 5(a) and 5(b)). Additionally, the target of
miR-497-5p was confirmed to be IL2RB, as evidenced by
miR-497-5p mimic transfection inhibiting the luciferase
activity of IL2RB-wt (Figure 5(c)). These results showed that
miR-497-5p could target the expression of IL2RB.

3.6. miR-497-5p/IL2RB Was Essential for LPS-Induced
Apoptosis and Inflammatory Cytokine Production in BEAS-
2B Cells. For further investigating whether miR-497-
5p/IL2RB affects sepsis-induced ALI in vitro, we firstly trans-
fected BEAS-2B cells with si-IL2RB to knock down IL2RB
expression (Figure 6(a)). The results in Figures 6(b) and
6(c) represented that IL2RB deficiency reduced cell viability
and elevated apoptosis in the miR-497-5p inhibitor and
LPS-treated BEAS-2B cells. Western blot results also sup-

ported the above findings with the Bcl-2 expression dropped
and the Bax and cleaved caspase-3 expression elevated
(Figure 6(d)). Besides, si-IL2RB blocked the protective func-
tions of miR-497-5p suppression against the LPS-caused
inflammatory cytokine production (Figures 6(e) and 6(f)).
Overall, miR-497-5p deficiency mitigated inflammatory
cytokine production and apoptosis in LPS-treated BEAS-2B
cells at least partly via IL2RB.

3.7. Downregulation of miR-497-5p Improved ALI Induced by
Sepsis. Then, we studied the regulatory effect of miR-497-5p
on the sepsis model by treating mice with LPS. Before LPS
treatment, the intravenous injection of miR-497-5p antago-
mir was used to suppress miR-497-5p expression in septic
mouse lung tissues (Figure 7(a)). And histological injury
was mitigated by miR-497-5p antagomir (Figure 7(b)).
H&E staining of lung sections showed that the morphologi-
cal structure of pulmonary alveoli in sham-operated group
was normal. However, lung sections of septic mice showed
collapsed alveolar sacs, thickened alveolar walls and septa,
visible vascular congestion, and hemorrhage. And the
above-mentioned alveolus damage caused by sepsis could
be alleviated by miR-497-5p antagomir injection
(Figure 7(c)). Furthermore, we detected the apoptosis and
inflammatory cytokine levels in the lung tissue of septic mice.
We found that the miR-497-5p antagomir injection induced
a significant increment of Bcl-2 expression and a reduction of
Bax and cleaved caspase-3 expression in septic mice
(Figure 7(d)). Meantime, the levels of inflammatory cytokine
in septic mice were consistent with the above trends. miR-
497-5p antagomir significantly suppressed the increase of
inflammatory cytokine levels caused by LPS (Figure 7(e)).
The survival rates of the sepsis-induced acute lung injury
mouse model are shown in the Supplementary Material
(available here). These findings, in conjunction with the
above results, uncovered that low expression of miR-497-5p
relieved apoptosis and inflammation, as well as protected
mice from sepsis-induced ALI.

4. Discussion

Sepsis is a rapidly developing complication that is commonly
associated with severe trauma, burns, and major surgery [28].
However, the excessive reaction of the body to external dam-
age is the underlying cause of organ injury including acute
lung injury (ALI) caused by sepsis [29]. Therefore, it is
important to uncover the pathogenesis of reducing or inhi-
biting ALI. Here, we reported that downregulation of miR-
497-5p could alleviate ALI caused by sepsis for the first time.
Further studies had demonstrated that downregulation of
miR-497-5p exerted the above-mentioned protective effects
by negatively regulating the downstream target IL2RB. These
conclusions were supported by the following evidence: the
miR-497-5p-target relationship pairs were predicted in the
sepsis database via bioinformatics. miR-497-5p was upregu-
lated both in septic mice and LPS-treated BEAS-2B cells
and had a negative correlation with the IL2RB level. The
luciferase reporter gene experiment and ChIP analysis veri-
fied the binding relationship between miR-497-5p and
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Figure 2: miR-497-5p was upregulated in LPS-treated BEAS-2B
cells and septic mice. (a) qRT-PCR for miR-497-5p level in LPS-
treated BEAS-2B cells. (b) qRT-PCR for miR-497-5p level in
septic mice.
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Figure 3: Continued.

6 BioMed Research International



IL2RB. The downregulation of miR-497-5p reduced sepsis-
induced inflammatory cytokine production and apoptosis,
while the downregulation of IL2RB attenuated this protec-
tive effect.

The most common pathogen of ALI was gram-negative
bacteria. LPS on the bacterial surface was a key component
that induced sepsis [30]. The LPS-induced ALI animal model
reproduced the acute injury of lung tissue epithelium and
acute alveolus inflammation through inhalation or exposure
to LPS for a short time [31, 32]. Therefore, we established
the septic mouse model and an inflammation cell model by
treating with LPS. BEAS-2B cells were applied to construct
a cell model for studying biological processes including apo-
ptosis and inflammatory factor production [33–35]. Com-
pared with the sham-operation group, LPS mice showed
abnormal alveolar morphology. ALI induced by sepsis was
closely related to inflammation and lung cell apoptosis [36].
The proinflammatory factors activated the inflammatory
pathways and amplified the inflammatory cascade, leading
to worsening lung injury. And the inflammatory cytokine

overproduction damaged tissues and caused multiple organ
failure [37, 38]. Cleaved caspase-3 expression was an impor-
tant sign of apoptosis [39]. Studies have reported that cyto-
kines (TNF-α, IL-10, and TGF-β) could regulate apoptosis
by regulating the activity of caspase-8 in the death-induced
signaling complex or changing death or survival factor levels,
which control the Fas apoptotic pathway in sepsis [40]. And
excessive apoptosis could cause massive loss of immune cells,
which could lead to protracted inflammatory responses [41].
In this study, it was found that cleaved caspase-3 expression
level enhanced TNF-α, IL-1β, and IL-6 levels, and cell apo-
ptosis was elevated in LPS-treated mice and cells.

Recent researches have sported that miRNAs were
related to regulate the initiation and development of the
immune response to ALI in sepsis. miRNAs are expected to
become biomarkers for the diagnosis and treatment of sepsis
[42]. Based on targeting specific molecules or downstream
genes, miRNAs regulated inflammation and apoptosis in
the process of ALI [43]. miR-146 participated in the ALI
inflammatory reaction process, with significantly increased
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Figure 3: Suppression of miR-497-5p reduced LPS-induced apoptosis and inflammatory cytokine production in BEAS-2B cells. LPS was used
to stimulate BEAS-2B cells, and then cells were transfected with miR-497-5p inhibitor. (a) qRT-PCR for miR-497-5p level detection. (b) MTT
assay for cell viability detection. (c) Flow cytometry for the ratio of apoptosis. (d) Western blot for apoptosis-related protein expression. qRT-
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expression levels in an ALI model in vitro [44]. miR-27a
reduced inflammation and apoptosis by inactivating
TLR4/MyD88/NF-κB, thereby mitigating LPS-induced ALI
in mice [45]. After targeting PGRN, miR-34b-5p deficiency
alleviated the deterioration of lung apoptosis and inflamma-

tion in ALI mice induced by sepsis [46]. miR-539-5p reduced
ALI caused by sepsis via targeting ROCK1 and showed the
inhibitory effect of apoptosis and inflammation in MPVECs
[47]. In our study, miR-497-5p levels were found to be ele-
vated in LPS mice. The injection of miR-497-5p antagomir
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Figure 4: SP1 regulated miR-497-5p expression via binding to its promoter. (a) The expression of SP1 in the normal group and sepsis group
in the database. (b) The dataset was used to predict the binding sites of SP1 in miR-497-5p promoter. (c) qRT-PCR for SP1 and miR-497-5p
detection in BEAS-2B cells treated with si-SP1 or pcDNA3.1-SP1. (d) ChIP assay and (e) luciferase activity analyses for the SP1-binding site
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Figure 7: Downregulation of miR-497-5p improved ALI induced by sepsis. The septic mice with ALI were established by stimulating mice
with LPS. The lung tissues of sacrificed mice were obtained. (a) qRT-PCR for miR-497-5p pulmonary expression. (b) H&E was used to stain
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reduced apoptosis and inhibited the level of inflammatory
factors, thereby effectively reducing ALI induced by sepsis.
The low expression of miR-497-5p also showed the inhibi-
tory effect of apoptosis and inflammatory cytokine produc-
tion in BEAS-2B cells treated with LPS.

In our study, IL2RB was predicted and confirmed as the
target gene of miR-497-5p. Here, the effect of knocking down
miR-497-5p in reducing apoptosis and inflammatory factor
levels in ALI was reversed by inhibiting IL2RB expression
in BEAS-2B cells. By targeting upregulation of the IL2RB
expression, low expression of miR-497-5p improved ALI
caused by sepsis.

In conclusion, miR-497-5p deficiency alleviated the dete-
rioration of sepsis-induced apoptosis and inflammation by
upregulating IL2RB, which provided the basis for enriching
the potential therapy of sepsis and ALI induced by sepsis.
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