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A B S T R A C T

Interleukin-2 (IL-2) is a multifunctional cytokine in immune regulation. It is essential for the differentiation,
expansion and stability of CD25+Foxp3+ regulatory T (Treg) cells, which is an important factor in immune
suppression and self-tolerance. Meanwhile, IL-2 also stimulate effector T (Teff) cells to promote immune re-
sponses. The opposite and diverse function of IL-2 impedes its application to boost Treg cell populations in
autoimmune disease treatment. Thus, it became focus of the research to modulate IL-2 activities to enhance Treg
cell functions selectively. Based on the characteristic properties of Treg cells such as constitutively expression of
high affinity IL-2 receptors (IL-2Rs), multiple approaches, including IL-2/mAb complexes, IL-2 muteins and low-
dose of IL-2 have emerged in recent years to selectively target Treg cells and treat autoimmunity. These ther-
apeutic approaches have achieved favorable results in both clinical trials and experimental animal models, and
provided engineering blueprints to develop novel strategies of IL-2 treatments for autoimmune diseases.

1. Introduction

Interleukin-2 (IL-2) was originally discovered as a T cell growth
factor (TCGF) in 1976 [1] and was first cloned in 1983 [2]. As the first
cytokine effectual in cancer immunotherapy, IL-2 signals stimulate
different lymphocyte subsets, including T, B and natural killer (NK)
cells, during their proliferation, differentiation and immune responses.

Remarkably, abundant evidences demonstrate that IL-2 is essential for
the immune homeostasis and balance of Treg and Teff cells in immune
system, especially for cell number maintenance and functional activity
of Treg cells. Thus, administration of IL-2 is considered as an effective
method to boost Treg cell numbers and function to treat autoimmune
diseases. However, the short half-life [3], IL-2-induced toxicity [4] and
off-target effects on different cell populations limit the therapeutic
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application of IL-2 for cancer or autoimmune disorders. In recent years,
other approaches like IL-2/mAb complexes, IL-2 muteins and low-dose-
IL-2 emerged and revived IL-2 therapeutic strategies for autoimmune
diseases. In this review, we discuss recent findings on the development
of IL-2 therapeutics, focusing on the mechanisms how IL-2/mAb com-
plexes, IL-2 muteins and low-dosage of IL-2 amplify the amount of Treg
cells and maintain Treg cell functions.

2. IL-2 functions and its receptor system

IL-2 is a 15.5–16 kDa, four-α-helix-bundle type I cytokine with a
hydrophobic core [5]. Although several immune cells have been shown
to secrete IL-2, including CD4+ T cells, CD8+T cells, natural killer (NK)
cells, activated dendritic cells (DCs) and mast cells [6], at resting con-
ditions, the main production of IL-2 is from CD4+ T helper cells [7].
After immune activation by T cell receptor (TCR) stimulation, IL-2
production by CD4+ and CD8+ T cells is rapidly increased, then supply
to other immune cells regulated by IL-2 [8]. Various transcription
factors such as nuclear factor of activated T cells (NFAT) [9] and acti-
vator protein 1 (AP-1) [10] activated by TCR signals can upregulate IL-
2 expression. It's very interesting that Treg cells are unable to produce
IL-2, even on activated conditions. TCR-induced IL-2 production by
activated T cells is also regulated by several negative regulators, in-
cluding transcription factor B lymphocyte-induced maturation protein 1
(BLIMP1) [11] and other immune checkpoint inhibitors [12]. Such
mechanisms prevent overproduction of IL-2 which may result in im-
mune disorders.

In the early time of study about IL-2 biological function, IL-2 was
thought to be an essential cytokine to activate immune response be-
cause it promoted the differentiation of naive T cells into effector T
cells. This view was challenged in 1993, when it was found that
knockout of the gene encoding IL-2 in mice resulted in autoimmunity
and lymphoproliferation rather than expected immune deficiency [13].
Subsequent studies demonstrated that knockout of the gene encoding
IL-2Rα (also known as CD25) in mice also showed similar phenotypes
[14]. Because of high level expression of CD25 on its cell surface, Treg
cell was considered as the key factor in autoimmunity due to IL-2 sig-
naling defects. This was confirmed by showing that in IL-2-deficient or
IL-2R-deficient mice, Treg cells were absent as well, and the deficient
mice which adopted Treg cells from normal mice could recover from
autoimmunity [15]. Therefore, IL-2 has converse effects in im-
munoregulation. It can stimulate Teff cells and promote the immune
responses to fight against cancer. Paradoxically, it can maintain Treg
cells, suppress immune responses and be utilized in therapy for auto-
immune diseases and rejection of transplanted organs. Moreover, it was
observed that IL-2 was a key cytokine in T cells differentiation. It
promoted Treg, T helper 1 (TH1) [16] and TH2 [17] cell differentiation
but inhibited TH17 [18] and T follicular helper (TFH) [19] cell differ-
entiation.

IL-2 exerts its function via binding to three classes of IL-2 receptors
(IL-2Rs), monomeric, dimeric and trimeric IL-2Rs with different affi-
nities. Monomeric IL-2R has low affinity for IL-2 (Kd ~10−8 M) con-
taining only IL-2Rα (also known as CD25). Due to lack of intracellular
signal motif in CD25 peptide chain, interaction of IL-2 with monomeric
IL-2R is unable to induce the signal transduction [20]. Conversely, IL-2
bind to dimeric IL-2R comprising IL-2Rβ (also known as CD122) and IL-
2Rγ (known as common γ-chain, γc) with moderate affinity (Kd

~10−9 M) and trimeric IL-2R comprising α, β and γ subunits with high
affinity (Kd ~10−11 M) [21]. Both IL-2Rβγ and IL-2Rαβγ receptors
activate downstream signaling based on intracellular signal domains of
IL-2Rβ and γc. For the IL-2Rαβγ receptor, the structural data of IL-2-
receptor complex suggested that IL-2 initially binds to IL-2Rα and
subsequently combine with IL-2Rβ and γc to form the quaternary
complex. In addition, IL-2Rs binding sites and IL-2 key residues in in-
terface were identified. Residues of IL-2 which primarily mediate re-
ceptor interactions contain R38, F42, Y45 for IL-2Rα, D20 and N88 for

IL-2Rβ and Q126 for IL-2Rγ [22]. These interactions provide the basis
for engineered IL-2 muteins to modulate their binding affinity for α, β
and γ subunits. Following receptor binding, the IL-2-receptor complex
is internalized, IL-2Rβ and γc are degraded while IL-2Rα returns to the
cell membrane [23]. IL-2Rβγ receptors are expressed primarily on
resting NK cells and naive CD4+ or CD8+ T cells. Upon TCR co-sti-
mulation, naive cells express IL-2Rα transiently to respond to IL-2.
Unlike effector T cells, Treg cells constitutively express IL-2Rα making
this cell subset very sensitive to IL-2 [24]. In addition to lymphoid cells,
non-immune cells, including endothelial cells can express IL-2Rαβγ
receptors. [25]. IL-2 binding directly to endothelial cells in a CD25-
dependent manner [26] will exert endothelial cell damage and result in
vascular leak syndrome (VLS).

Signal transduction of IL-2 occurs via three principal signaling
pathways including JAK-STAT, RAS-MAPK and PI3K-AKT pathways. IL-
2-receptor interaction causes the assembly of cytoplasmic signal do-
mains of receptor subunits and then activate JAK1 and JAK3 which
associate with IL-2Rβ and γc respectively [27]. The activation of JAK1
and JAK3 phosphorylates tyrosine residues in IL-2Rβ. It was already
identified that Tyr338, Tyr392 and Tyr510 in IL-2Rβ play crucial roles
in signal transduction. Phosphorylated Tyr338 mediates recruitment of
protein SHC and phosphorylates the downstream signal molecules, thus
RAS-MAPK pathways is activated. Whereas phosphorylated Tyr392 and
Tyr510 recruit STAT5 and cause their phosphorylation and nucleus
translocation to control the target genes transcription [28]. Notably,
there is a positive feedback loop provided by IL-2 that STAT5 binding to
the Cd25 gene locus makes T cells expressing more CD25 on cell surface
to respond IL-2 more efficiently [7].

3. IL-2 and Treg cells

The early work identified a subset of CD4+ T cells constitutively
expressing high level of CD25 in 1995 [24]. These cells, known as
regulatory T cells, are suggested as the major subset to suppress im-
mune responses and maintain immunologic self-tolerance in immune
system. Adoption of sufficient Treg cells rescued mice which suffered
the autoimmune disease [15]. While high amounts of CD25 expression
was unable to represent the most specific marker of Treg cells until the
identification of transcription factor forkhead box P3 (Foxp3) [29–31].
The mutation in the Foxp3 gene led to immune-mediated disorders such
as diabetes, lymphadenopathy and cytokine storm in vivo [32]. These
symptoms showed the correlation between the deficiency of Foxp3 in
Treg cells and autoimmune diseases. On the basis of these discovery,
subsequent experiments gave the additional evidence that Foxp3 had
critical roles in differentiation and suppressor function of Treg cells. T
cells-deficient mice only received Foxp3-sufficient precursor cells could
generate Treg cells and recover from immune disorders [31]. Facti-
tiously reduction of Foxp3 expression resulted in functional impairment
of Treg cells [33]. Moreover, the normal immune response was not
influenced by Foxp3 deficiency in effector T cells [34]. These ob-
servations showed that the expression of Foxp3 is required for the Treg
cell suppressor function. Mechanisms of Treg cell-mediated suppression
is now understood in considerable detail and substantial molecules are
demonstrated to participate in suppression. Several cell-surface mole-
cules were proposed to function as mediators to regulate Treg cell ac-
tivities in immune tolerance, including cytotoxic T lymphocyte antigen-
4 (CTLA-4) [35], CD25 [36], CD39 [37] and CD73 [38]. Other Treg
cell-secreted immunosuppressive cytokines, such as TGF-β [39], IL-10
[40] and granzyme B [41], executed immunosuppression through
dampening responds of effector T cells or contact-dependent cytotoxi-
city.

Differentiation of Treg cells occurs in the thymus relied on TCR and
IL-2 signals. After reception of a TCR signal, a number of CD4 single-
positive (SP) thymocytes are survived and instructed by cytokines to
differentiate into thymus derived Foxp3+ Treg cells [42]. Among the
cytokines which promote the Treg cell differentiation, IL-2 is the most
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essential factor. The evidence was given by experiments that in IL-2-
deficient or IL-2Rα-deficient mice, the number and proportion of Treg
cells decrease drastically, on the contrary, loss of IL-15 or IL-7 alone
was unable to impair the Treg cell generation [43]. Moreover, injection
of neutralizing IL-2 antibodies into normal mice reduced the number of
Treg cells in the thymus and led to autoimmune disease symptoms [44].
In addition to the peripheral homeostasis of Treg cells, IL-2 has been
shown to be important for increasing the suppressive activity of Treg
cells [45]. As mentioned above, JAK-STAT5 is one of the IL-2-induction
signaling pathway, and STAT5 binds to Foxp3 promoter to upregulate
the expression of Foxp3 [46]. In this line, some experiments showed
that STAT5-deficient mice were lack of CD4+CD25+Foxp3+ T cells
[47] and constitutively expression of STAT5 leads to recover and ex-
pansion of Treg cells [48]. These studies strongly support the indis-
pensable role of IL-2 in Treg cell development. More remarkable, sev-
eral pathways for inhibiting TCR and IL-2 signaling outputs involve
phosphatase and tensin homologue (PTEN) [49], programmed death 1
(PD-1) [50] and CTLA-4 [51] in Treg cells. PI3K-AKT signaling in-
hibition by these negative regulators makes Treg cells more dependent
on IL-2-induction-STAT5 signaling pathway than effector T cells. A new
study identified Mst1-Mst2 as the amplifier of IL-2-STAT5 signaling in
Treg cells [52], underscoring the requirement for IL-2 to maintain Treg
cell populations and immune tolerance (Fig. 1).

Collectively, Treg cells make a large contribution in suppressing
immune response and keeping immune homeostasis, meanwhile, IL-2 is
the key factor to maintain expansion and function of Treg cells by
regulating STAT5 signaling pathway and Foxp3 expression. Thus, IL-2
analogues such as IL-2/antibodies complex and IL-2 muteins are pro-
mising therapeutic strategies to treat autoimmune diseases.

4. New therapeutic strategies based on IL-2 analogues

4.1. IL-2/mAb complexes

Administration of IL-2 combined with its specific monoclonal anti-
body (mAb) can delay the degradation of IL-2 in vivo. More important,
when coupled with IL-2, some IL-2/mAb complexes cause expansion of
effector T cells showing the anti-cancer effectiveness, whereas, other IL-

2/mAb complexes selectively maintain the biological function of Treg
cells leading to immunosuppression.

4.1.1. IL-2/JES6–1 complex
JES6–1 and S4B6 are mouse monoclonal antibodies against mouse

IL-2, but they have distinct functions in vivo. IL-2/S4B6 complexes
preferentially stimulated T cells with high level expression of IL-2Rβγ
receptors, especially CD8+ T cells, causing the cells above 100-flod
expansion in vivo. While short courses injections of IL-2/JES6–1 (anti-
mouse IL-2 antibodies) complexes increased the number of CD25+

Foxp3+ Treg cells without significantly affected CD8+ T cells and NK
cells [53]. Lots of researches focused on IL-2/JES6–1 complexes have
demonstrated promising results in the treatment of several autoimmune
diseases and immunological rejection. Injection of IL-2/JES6–1 com-
plexes in nonobese diabetic (NOD) mice promoted Treg cell survival
and protected mice from developing diabetes [54]. A 1:10 ratio of IL-2:
JES6–1 complexes was used to expand Treg cells and prevent murine
allergic airway diseases including airway inflammation and airway
hyperresponsiveness [55]. In experimental autoimmune en-
cephalomyelitis (EAE) mice model, IL-2/JES6–1 complexes render the
mice resistant to EVE, and combined with rapamycin, the complexes
could also be used to treat ongoing disease [56]. In experimental au-
toimmune myasthenia gravis (EAMG) mice model, mice treated with IL-
2/JES6–1 complexes of 1.5 μg of IL-2 with 50 μg of JES6–1 improved
the symptoms of EAMG [57]. For arthritis, IL-2/JES6–1 complexes
(1.5 μg/7.5 μg) were injected in collagen-induced arthritis (CIA) mice,
and suppressed the induction of CIA and inflammatory responses [58].
In another similar experiment, 5 μg of JES6–1 with 1 μg of IL-2 effec-
tively boosted a 1.6-fold expansion of CD4+Foxp3+ Treg cells in per-
ipheral blood, and the level of IL-10 production was also increased
[59]. Preventing development of virus-induction inflammation was
suggested by a recently research that administration of the IL-2/JES1–6
complexes to mice, prior to corneal HSV-1 infection, significantly ex-
panded Treg cells particularly and resulted in a marked reduction in the
development of severe herpetic stromal keratitis (HSK) [60]. Ad-
ditionally, IL-2/JES6–1 complexes show promising potency for the
prevention of skin allograft rejection [61] and chronic graft-versus-host
disease (GVHD) in allogeneic hematopoietic stem cell transplantation

Fig. 1. IL-2-induced signal network in Treg cells.
IL-2 is a pleiotropic cytokine that activates both regulatory T cells and effector T cells through three signal pathways: JAK-STAT, RAS-MAPK and PI3K-AKT pathways.
However, compare with Teff cells, major differences in Treg cells are that Mst1-Mst2 amplifies the STAT5 signaling while PTEN, PD-1 and CTLA-4 inhibit PI3K-AKT
signaling. Those co-regulations make Treg cells more dependent on IL-2-induction-STAT5 pathway.
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(HSCT) [62]. For some metabolic disorders or immunologic damage,
such as renal ischemia reperfusion injury (IRI) [63] and atherosclerosis
[64], administration of the complexes also improved the pathology
with expansion of CD25+ Foxp3+ Treg cells.

The mechanisms that IL-2/JES6–1 complexes selectively promote
expansion of Treg cells was suggested by crystallographic and biophy-
sical data. Firstly, IL-2/JES6–1 complexes crystal structure demon-
strated that there existed steric competition between JES6–1 and both β
and γ subunits. IL-2 residues (Q22 and M23) which were originally
essential to the IL-2/IL-2Rβ and IL-2/γc interactions now participated in
hydrogen bonds formation with JES6–1. The binding between IL-2/
JES6–1 complex and IL-2Rβγ receptor was inhibited by steric hin-
drance. Therefore, complexes were unable to target effector T cells
which mainly expressed IL-2Rβγ receptors. However, compared with
IL-2Rα-bound IL-2, JES6–1 binding distorted presumed receptor-bound
states of IL-2 AB loop. That allosterically distortion potentially led to an
exchange mechanism [65] that JES6–1 would be displaced by IL-2Rα
when encountering sufficient IL-2Rα on Treg cell surface. After dis-
sociation of JES6–1, the IL-2Rα-bound IL-2 was liberated to recruit IL-
2Rβ and γc to form the functional signaling complexes ultimately. Ad-
ditionally, this mechanism provided a positive transcriptional feedback
loop that only cells with sufficient amounts of surface IL-2Rα like Treg
cells had the capacity to displace JES6–1. IL-2 signaling-induced ele-
vation of IL-2Rα expression in turn boosted the sensitivity of Treg cells
to the immunocomplex [65–67] (Fig. 2).

4.1.2. IL-2/F5111.2 complex
Recently experimental data showed that administration of an anti-

human IL-2 antibody F5111.2 resulted in similar effect as JES6–1 in
vivo. F5111.2 was screened by a single-chain variable fragment phage
display library and IL-2/F5111.2 complexes could expand Treg cell
populations selectively. The crystal structure revealed that the IL-2Rβ-
binding site of IL-2 was completely blocked by F5111.2. Light-chain
CDR1 and CDR3 loops and the heavy-chain CDR2 and CDR3 loops

interacting with IL-2 caused steric obstruction for IL-2Rβ. Meanwhile,
the antibody generated steric perturbations on IL-2 A–B and BeC loops
which propagated to the IL-2Rα-binding site [68]. These perturbations
slightly decreased the IL-2 affinity for CD25 and gave a competitive
advantage for Treg cells with high affinity IL-2Rs binding to IL-2/
F5111.2 complexes. In addition, in NOD mice model, EAE model and
xeno-GVHD model [69], administration of IL-2/F5111.2 complexes for
several consecutive days revealed the tremendous potential in treat-
ment for autoimmune diseases and immunological rejection. Consist
with IL-2/JES6–1 complexes [65], the strong evidences suggested that
IL-2/F5111.2 complexes induced substantial increase of Foxp3, CD25
and p-STAT5 signals without influence in Teff cell populations. Active
efforts are underway to translate the application of the antibody
F5111.2 into autoimmune diseases and promote this immunotherapy
method forward into clinical trial [68].

4.1.3. IL-2/mAb fusion-JY3 IC
Although IL-2/mAbs complexes show gratifying results in immune

disease treatment, the optimal cytokine/mAbs ratio and stability of
complexes in vivo remain of concern [70]. Off-target effects release free
IL-2 from complexes, leading to same behavior as the naked cytokine
which activates both Treg and Teff cells unselectively. To overcome this
trouble, Garcia and his colleagues used a flexible (Gly4Ser)2 linker to
fuse the IL-2 and JES6–1 together. Indeed, the cytokine/mAb fusion
(denoted the IC) avoided cytokine falling off, but lost its capacity to
stimulate the IL-2Rα+ cells. The intramolecular high affinity between
IL-2 and JES6–1 in IC disrupted the exchange mechanism which exists
in IL-2/JES6–1 complexes, resulting in cytokine activity abolishment.
Through the exchange mechanism [65], there must be an optimal IL-2/
mAb affinity to expand Treg cells specifically. Thus, they selected some
residues at the cytokine/mAb interface to design JES6–1 Ab alanine
mutants which reduced the cytokine/mAb affinity significantly [71].
Subsequently, they reformatted the mutants as the IC fusions. In
C57BL/6 mice and NOD mice, experimental results indicated one IC

Fig. 2. Exchange mechanism of IL-2/JES6–1 complexes
The JES6–1 sterically blocked the IL-2/IL-2Rβ and IL-2/IL-2Rγ interactions and distorts IL-2Rα binding site. Sufficient IL-2Rα can displace the JES6–1 and release IL-
2 to form the IL-2-receptors complexes. This mechanism induces a preferential activation of Treg cells.
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mutant denoted JY3 IC, preferential expanded Treg cells versus Teff
cells. Compared with the IL-2/JES6–1 complexes, the JY3 IC treatment
increased the CD25 expression on Treg cells more intensely. Moreover,
the toxicity caused by off-target effects in IL-2/JES6–1 complexes
treatment was alleviated when used equivalent dose of the JY3 IC. In
the adoptive T cell transfer model, studies suggested that JY3 IC had a
greater ability to expand IL-2Rα+ cell subsets relative to IL-2/JES6–1
complexes. In dextran sodium sulfate (DSS) colitis model, JY3 IC also
achieved better therapeutic effect than IL-2/JES6–1 complexes [71].
Overall, the JY3 IC enhanced the stability of cytokine/mAb, mean-
while, it maintained the exchange mechanism which allowed the cy-
tokine regulating immune cells. ICs showed therapeutic advantages to
the mixed cytokine/mAb complexes in selectively Treg cell expansion
and autoimmune disease treatment. This approach extends the appli-
cation of cytokine-antibodies system as another novel im-
munotherapeutic strategy.

4.2. IL-2 muteins

Engineered IL-2 muteins are considered interesting tools to mod-
ulate IL-2-mediated immune responses by antagonizing endogenous IL-
2. Focus on reducing endothelial damage and VLS [72], some IL-2
muteins, such as ‘no-α mutein’ [73], were generated with attenuated
binding to IL-2Rα. Other IL-2 muteins with decreased affinity for IL-
2Rβ were generated to disfavors contact with NK cells for decreasing IL-
2-induced toxicity [74–76]. Although, these muteins did not achieve
decreased toxicity in clinical trials, they showed significant selectivity
for high affinity IL-2Rs and Treg cells. For instants, BAY 50–4798, an IL-
2 mutein (N88R) exhibited a 2700-fold increase in affinity for IL-2Rαβγ
relative to IL-2Rβγ [74]. It revived this kind of muteins in expansion
Treg cells and autoimmunity treatments. In this line, another IL-2
mutein (N88D) with reduced binding to the IL-2Rβ was fused with IgG
to selectively activates and expands Treg cells. In this study, treatment
of cynomolgus monkeys or mice with single low doses of this mutein
induced sustained preferential activation of Treg cells accompanied by
demethylation of FOXP3 and CTLA4 genes which strongly predicted
that Treg cells were functional and immunosuppressive [77]. The
therapeutic abilities of this mutein in autoimmune disease models are
anticipated.

Since decreased affinity for IL-2Rβ makes muteins Treg cell-biased,
on the contrary, muteins with increased binding affinity for IL-2Rβ can
bind with moderate affinity IL-2Rs on Teff cells irrespective of IL-2Rα.

The agonistic IL-2 mutein H9 (known as IL-2 superkine) that functions
independently of IL-2Rα was generated with 200-fold increased affinity
for IL-2Rβ. This mutein resulted in efficient expansion of cytotoxic T
cell populations to upregulate anti-tumor responses [78]. On the basis
of H9 property, H9-RETR (L18R, Q22E, Q126T, and S130R) was en-
gineered as a potent antagonist [79]. It retained the high binding affi-
nity for IL-2Rβ but showed pronounced decreased affinity for γc. The
results showed that little IL-2-induced STAT5 binding site could be
induced by H9-RETR. Hence, H9-RETR were incapable of activating the
signaling pathways (Fig. 3). When used in vivo, H9-RETR showed more
effective in blocking IL-2-induced pSTAT5 signaling and suppressing
action of T cells regardless of Teff or Treg cells than CD25 (Daclizumab)
[80] and CD122 antibodies (Mikβ1) [81]. Because of the powerful and
indiscriminate silencing effects on T cells, mice treated with H9-RETR
for 10 days had longer survival than control groups in mismatched bone
marrow transplantation mice model, which demonstrated that the
mutein could inhibit lethal GVHD. In addition, the malignant and
spontaneous proliferation of CD4+ T cells was inhibited effectively by
H9-RETR at 10 μg/ml in a patient with smoldering adult T cell leukemia
(ATL) caused by human T cell lymphotropic virus-I (HTLV-I) [21,79].

Due to the enormous therapeutic potential, pharmaceutical com-
panies flock to IL-2 muteins in autoimmune disease treatment [82].
NKTR-358, developed by Nektar Therapeutics, was a novel IL-2/poly-
ethylene glycol (PEG) conjugate aiming to promote Treg cells selec-
tively. Chemical modification by PEG in NKTR-358 attenuated affinity
for the IL-2Rβ relative to native IL-2, thus, Treg cells with high affinity
receptors were far more sensitive to NKTR-358 than Teff cells (Fig. 3).
Experimental results in the mouse delayed-type hypersensitivity (DTH)
model, mouse systemic lupus erythematosus (SLE) model and primate
cutaneous hypersensitivity model demonstrated that NKTR-358 re-
stored sustained preferential Treg cell functions [83]. Currently in-
vestigation of NKTR-358 in Phase 1 study were anticipated. Celgene
also bought a company which developed a novel IL-2 mutein-Fc fusion
protein called DEL106 [84]. AMG 592, another new IL-2 mutein in
investigational studies was recently designed by Amgen. AMG 592
showed robust preference to Treg cell expansion relative to conven-
tional effector T cells and NK cells in vitro. In first-in-human (FIH) study,
it increased Treg: Tcon ratio approximately fourfold via baseline at the
highest dose in healthy volunteers [85]. Further investigations of
therapeutic mechanism of AMG 592-induced modulation of immune
homeostasis are eagerly anticipated.

Fig. 3. Mechanism of IL-2 muteins.
(a) H9RETR has higher β binding affinity and lower γ binding affinity. It antagonizes endogenous IL-2 binding. Meanwhile, without IL-2Rγparticipation, H9RETR is
unable to activate signaling pathway. This mutein act as an antagonist to suppress Teff cell activity. (b) Treg cells with high affinity receptors are more sensitive to
NKTR-358 because PEG modification decreases β binding affinity.
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4.3. Low-dose IL-2

Administration of low-dose IL-2 has got a wide range of applications
in several clinical settings to restore Treg cell populations and treat
autoimmune diseases. The underling mechanism is that Treg cells
constitutively express high affinity IL-2Rs which is sensitive to low level
IL-2 [86]. Low-dose IL-2 has shown promising results in the treatment
of several autoimmune such as GVHD [87], Type 1 diabetes (T1D) [88],
hepatitis C virus-related autoimmunity [89]. Of note, in a study by
Humrich et al., one female patient with severe SLE refractory or in-
tolerant to traditional therapies was recovered after receiving daily
administrations of recombinant human IL-2 (aldesleukin) at single
doses of 1.5 or 3.0 million IU for four treatment cycles. The data
showed that low-dose IL-2 treatment improved skin eruptions and la-
boratory signs of myositis, decreased the levels of anti-dsDNA-anti-
bodies and increased the population of Treg cells [90]. In the study of
von Spee-Mayer et al., five patients with refractory SLE were treated
daily with 1.5 million IU of human IL-2 for five consecutive days [91].
Both the case report and case series gave the first implications of the
possible efficacy of low-dose IL-2 therapy in systemic autoimmune
disease. Subsequently, He et al. completed the first clinical trial of low-
dose IL-2 in SLE [92]. 38 patients with SLE were administered 1 million
IU of human IL-2 every other day for 2 weeks, followed by a 2-week
break. Their results demonstrated that administration of low-dose IL-2
to patients with active SLE could increase the population and function
of Treg cells, decrease the (TFH+TH17) cell/Treg cell ratio and reduce
SLE disease activity. This first open-labelled study of low-dose IL-2
therapy in SLE highlighted the detailed clinical efficacy of low-dose IL-2
treatment in SLE.

Recently, Rosenzwajg et al. assessed the biological and clinical ef-
fects of low-dose IL-2 in a single clinical trial treating 46 patients with
11 autoimmune diseases including rheumatoid arthritis, ankylosing
spondylitis, systemic lupus erythematosus, psoriasis, Behcet's disease,
granulomatosis with polyangiitis, Takayasu's disease, Crohn's disease,
ulcerative colitis, autoimmune hepatitis and sclerosing cholangitis. All
patients received 1 million IU/day of IL-2 from day 1 to day 5 and then
every 2 weeks from day 15 to day 180. With this dose and treatment
scheme used, low-dose IL-2 selectively activated and expanded Treg
cells without impacting on Teff cells, and there was no serious adverse
event induced by treatment. Additionally, Clinical Global Impression
(CGI) scores and disease-specific score were improved at month 3 and
continued to month 6. Likewise, arthralgia and chronic fatigue symp-
toms were improved significantly [93]. This comprehensive study de-
monstrated the clinical efficacy, safety and tolerance of low-dose IL-2
treatment in heterogeneous patients with autoimmune diseases. Some
autoimmune disorders like alopecia areata (AA) [94] and immune
thrombocytopenia (ITP) [95] were also demonstrated to be treated by
Low-dose IL-2.

Although the results of low-dose IL-2 treatment are promising, there
are some challenges need to be overcome. An appropriate dose or
scheme of low-dose IL-2 administrated to various autoimmune diseases
needs more abundant clinical data to support. In addition, the half-life
of IL-2 is short. Finally, although the low-dose IL-2 can selectively ac-
tivate Treg cells generally, it is unavoidable to affect Teff cells in a dose-
dependent manner. Off-target effects and inflammation will limit the
application of IL-2. Thus, it worth to explore other novel IL-2 related
drugs such as IL-2/antibody complexes and IL-2 muteins which more
selectively expand Treg cells than low-dose IL-2.

In addition to nascent low-dosage IL-2 therapy, anti-TNF and anti-
IL-6 agents have already been a commercial success and treated mil-
lions of patients with autoimmune diseases such as rheumatoid ar-
thritis, inflammatory bowel disease and Castleman disease [96,97].
Tumor-necrosis factor-α (TNF-α) and interleukin-6 (IL-6) are proin-
flammatory cytokines with multifunctional functions on inflammation
and antitumor responses in immune system, and they can induce in-
flammation, autoimmunity and tissue degeneration. Anti-TNF biologicsTa
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include antibodies and “TNF receptor-Fc fusion proteins”. Infliximab,
Adalimumab, and Golimumab are anti-TNF antibodies, Etanercept is a
TNF receptor 2 and human IgG1 Fc fusion protein. The drugs mentioned
above treat autoimmune diseases by neutralizing the endogenous TNF
and inhibiting its function in vivo. However, anti-TNF antibodies still
have limitations including low rates of disease remission, the devel-
opment of adverse effects and the formation of anti-drug antibodies
(ADA) which is one of the causes of clinical nonresponse to treatment
[98–100]. IL-6 is considered as a driver of autoimmunity and chronic
inflammation because it promotes the differentiation of TH17 cells
which are major factors in inducing tissue damage in autoimmune and
inflammatory disorders. Thus, IL-6R antibodies like Tocilizumab and
Sarilumab prevent endogenous IL-6 receptors ligand binding, block its
functions on targeted cells and inhibit its activity [97]. While clinical
studies demonstrate that anti-IL-6 antibodies treatments increase the
risk of bacterial infections. This major side effect is caused by attenu-
ating host defense against infection due to blocking of IL-6 signaling
[101]. Compared with anti-TNF or anti-IL-6R antibodies, IL-2 treats
autoimmune diseases by expanding Treg cells and balancing Treg/Teff
ratio. In addition, low-dose IL-2, IL-2/mAb complexes and IL-2 muteins
can selectively target on Treg cells to induce immunosuppression and
maintain immune tolerance with relatively mild efficacy and low
toxicities. New therapeutic strategies based on IL-2 can applicated more
broadly not only for autoimmune diseases treatments (Table 1), but also
for rejection of transplanted organs.

5. Conclusions

The immunologic balance of Treg and Teff cells are important for
the immune homeostasis and IL-2 is the key factor to maintaining
balance. First thought to be a TCGF which was related with anti-tumor
response, IL-2 was subsequently demonstrated by experimental results
that it had diverse actions including its ability to drive the differ-
entiation and expansion of Treg cells, as well as to control self-tolerance
and inflammatory reaction. Revolving around the cytokine, low-dose
IL-2, IL-2/mAb complexes and IL-2 muteins were three potential ther-
apeutic methods to treat autoimmune diseases. Recently developments
of these methods provided foundation for novel therapeutic strategies,
which could be adapted to other cytokines. Although establishing more
precise and efficient methods to achieve the most optimal ratio of Treg
and Teff cells are challenges, further studies will show potency of this
remarkable cytokine IL-2 and its analogues in immunotherapy.
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