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ARTICLE INFO ABSTRACT

Rheumatoid arthritis (RA) is a chronic aggressive arthritis that is characterized with systemic inflammation
response, the production of abnormal antibodies, and persistent synovitis. One of the key mechanisms under-
lying the pathogenesis of RA is the imbalance of CD4 + T lymphocyte subsets, from T helper (Th) 17 cells and
regulatory T (Treg) cells to T follicular helper (Tfh) cells and T follicular regulatory (Tfr) cells, which can
mediate autoimmune inflammatory response to promote the overproduction of cytokines and abnormal anti-
bodies. Although the treatment of RA has greatly changed due to the discovery of biological agents such as anti-
TNF, the remission of it is still not satisfactory, thus, it is urgently required new treatment to realize the sustained
remission of RA via restoring the immune tolerance. Interleukin-2 (IL-2) has been discovered to be a pleiotropic
cytokine to promote inflammatory response and maintain immune tolerance. Low-dose IL-2 therapy is a driver of
the imbalance between autoimmunity and immune tolerance towards immune tolerance, which has been tried to
treat various autoimmune diseases. Recent researches show that low-dose IL-2 is a promising treatment for RA.
In this review, we summarize the advances understandings in the biology of IL-2 and highlight the impact of the
IL-2 pathway on the balance of Th17/Treg and Tfh/Tfr aiming to investigate the role of IL-2-mediated immune
tolerance in RA and discuss the application and the therapeutic prospect of low-dose IL-2 in the treatment of RA.
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1. Introduction

Rheumatoid arthritis (RA) is a relatively common chronic ag-
gressive arthritis, characterized with systemic autoimmune inflamma-
tion response, the overproduction of abnormal antibodies and persis-
tent synovitis [1], which can cause the damage of cartilage and bone
leading to disability in the final [2,3]. Genetics, environmental risk
factors and epigenetic modification have been confirmed to be involved
in the pathological process of RA [4-7]. However, the etiology of RA
remained unclear. It has found that macrophages, which have been
identified into two different polarization states including classically
activated macrophages (M1) and alternatively activate macrophages
(M2), have a key role in leading to autoimmune inflammation response
[8,9]. M1 macrophages can promote osteoclastogenesis in synovial
tissue by secreting a large number of pro-inflammatory cytokines such
as tumor necrosis factor-a (TNF-a) and IL-1 to cause joint erosion
[8].While M2 macrophages can produce anti-inflammatory cytokines
mainly IL-10 to exert anti-inflammation effect [8,9]. Present systematic
review indicates that in blood and in the synovial tissue of RA patients,

there is an imbalance between the M1 macrophage and M2 macrophage
[9]. Basis on this, the first biological agent, anti-TNF, after conventional
synthetic disease-modifying anti-rheumatism drugs (csDMARDs) was
born to antagonize the inflammatory factor TNF and inhibit the po-
larization of macrophage. However, some patients have to discontinue
anti-TNF therapy due to loss of response or intolerance, for these pa-
tients who have not achieved remission, the advantages and dis-
advantages of early use of alternative biological drugs need to be fur-
ther weighed, so it is necessary to find other effective new treatment
strategies for RA from the pathogenesis of it [10].

It has been confirmed that the breakdown of immune tolerance in
patients with RA caused by dysfunctional CD4 + T cells is one of the
key mechanisms to promote the pathogenesis and progression of RA.
Naive CD4 + T cells can be activated upon interactions with antigen
present cells (APC) to differentiate into several different subsets of cells
and the imbalance of the number and function of some cells can con-
tribute to the abnormal activation of cells and the dysfunction of hu-
moral immune [11,12],which is the central mediators of the auto-
immune pathology of RA [11].0n the one hand, the systemic
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autoimmune inflammation response of RA mediated by the abnormal
activation of innate immune cells including dendritic cells, mast cells,
and innate lymphoid cells, and adaptive immune cells including T
helper (Th) 17 cells, T follicular regulatory(Tfr) cells, B cells and plasma
cells, can lead to the overproduction and overexpression of pro-in-
flammatory cytokines such as TNF,IL-6,IL-17and so on, finally result in
the damage of cartilage and bone [13-16].0n the other hand, the
dysfunction of humoral immune of RA caused by the aberrant auto-
antigen presentation and the excessive activation of antigen-specific T
and B cells can lead to the overproduction of abnormal antibodies in-
cluding rheumatoid factors (RF) and anti-cycle citrullinated peptide
antibody (anti-CCP) [17,18],which are able to recognize the antigens in
joints to form immune complexes deposited on synovial tissue leading
to the persistent synovitis even in the pre-RA phase [19] and the de-
struction of joints in the final [17,20,21].It has been confirmed that
Th17 cells (a subpopulation of T cells characterized with the secretion
of IL-17) can promote synovial inflammation by producing many pro-
inflammatory cytokines, while Tregs cells can suppress inflammation
response and maintain immune tolerance [22-24]. T follicular helper
(Tfh) cells and Tfr cells (a new subset of CD4 + T cell) can exert an
opposite effect in the regulation of humoral immunity [25].Intensive
researches have showed that the imbalance of Th17/Treg cells and Tfh/
Tfr cells are related to the pathogenesis and development of RA [26,27],
reversal of which appears to be a potential therapeutic targets for RA.

With the full understanding on the biological characteristics and
function of IL-2, it has been gradually discovered that IL-2 can exert
different effects by activating different cells in immune system [28-31],
uncovering the pleiotropic function of IL-2: on the one hand, it acts as a
pro-inflammatory factor to promote autoimmune inflammatory re-
sponse; on the other hand, it induces the differentiation of Treg cells
and inhibits Th17 cells to maintain immune tolerance as an anti-in-
flammatory factor. The dose of IL-2 is a driver of the imbalance between
autoimmunity and immune tolerance. High-dose of IL-2 can activate
effector T cells to promote autoimmunity, while low-dose of IL-2 can
exert essential function to control immune responses and maintain self-
tolerance, which has been tried to treat various autoimmune diseases
such as type 1 diabetes (T1D) [32,33], HCV-induced vascuitis [34],graft
- versus - host disease (GVHD) [35,36] and systemic lupus er-
ythematosus(SLE)[37]to rebuild the immune tolerance. Recent re-
searches show that low-dose IL-2 is also a promising treatment for RA
[38]. However, low-dose IL-2 therapy is still a new field with some
challenges. For example, there is no conclusion about the optimal dose
and treatment scheme for low-dose IL-2 administration, and the long-
term efficacy and safety of it remains to be determined, in addition, it is
necessary to consider the risk of the activation of the effector arms of
immune system due to the relatively low selectivity of IL-2 for Treg
cells. Thus, the clinical application of low-dose IL-2 in autoimmune
diseases needs further exploration. In this review, we focus on the
biology of IL-2 and introduce the effects of IL-2 on Th17/Treg and Tth/
Tfr in patients with RA to explore the role of it in influencing the im-
mune tolerance of RA, and then recognize the clinical use and report
the progress of therapy with low-dose IL-2 to clarify its therapeutic
prospect in the treatment of RA, in order to provide a new therapy for
the targeted treatment of RA in the future.

2. The biology of IL-2
2.1. IL-2 and IL-2R

As early as 1976, a cytokine named T cell growth factor with the
unique ability to promote the development, proliferation, survival and
differentiation of T cells was discovered [39] and then was confirmed to
be IL-2 [40,41]. IL-2,which is mainly produced by activated CD4 + T
cells but can also be secreted by CD8 + T cells, NK cells and activated
dendritic cell (DCs) to a lesser extent, exerts effects via interacting with
IL-2 receptors (IL-2Rs) [28-31]. T cell receptor (TCR) on the surface of
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T cells combined with foreign- and self-peptide-major histocompat-
ibility complex(MHC) on antigen-presenting cells (APC) can stimulate
the expression of IL-2 and IL-2R [42].In addition, various transcription
factors can also regulate the expression of IL-2 and IL-2R, such as nu-
clear factor of activated T cells (NFAT) family members [43], activator
protein 1 (AP-1), nuclear factor- kB (NF-kB) [44], forkhead box protein
P3(FOXP3) [45] and B lymphocyte-induced maturation protein
1(Blimp-1) [46], signal transducer and activator of transcription(STAT)
[28]. It has been confirmed that NFAT can promote the expression of IL-
2, but FOXP3 can inhibit it [45-47]. Therefore, the production of IL-2 is
regulated positively and negatively [30].And there is a positive feed-
back loop provided by STAT5 and FOXP3, which bind to the IL-2Ra
gene locus to make the more expression of IL-2Ra [28], which is im-
portant in the application of IL-2.

IL-2R consists of three subunits including IL-2Ra (also known as
CD25), IL-2Rp (also known as CD122), and IL-2Ry (also known as
CD132) [28,30]. In the subsequent years of researches, a great deal of
understandings on the structure of the IL-2R has been acknowledged. It
has been confirmed that IL-2Ra lacks the cytoplasmic signal transduc-
tion domain [29] and is absent or rarely expressed on resting T cells
[30],but the combination of APC and TCR on the surface of T cells can
trigger the expression of IL-2Ra and the initially binding of IL-2 and IL-
2R can increase the level of IL-2Ra through a STAT5-dependent feed-
back loop [28] to enhance the affinity of IL-2R and result in the re-
cruitment of IL-2Rf [48,49], but IL-2Ra cannot transmit signal even the
addition of IL-2f, leading to the discovery of IL-2Ry [29]. IL-2Ry,
considered to be the common cytokine receptor y- chain (yc),plays an
important role in the signal transduction, which can not only response
to IL-2 but can also response to the yc family of cytokines including IL-
4, 1L-7, IL-9, IL-15, and IL-21 [50]. Furthermore, even in the absence of
IL-2Ra, IL-2 can bind with dimer IL-2R and lead to signal transduction
[51]. Thus, IL-2R can be divided into three categories: low affinity re-
ceptor (only IL-Ra), intermediate affinity receptors (containing IL-2Rf3
and IL-2Ry), as well as high affinity receptors (containing IL-2Ra, IL-
2RB and IL-2Ry).The intermediate affinity receptor is mainly con-
stitutively expressed on resting NK cells and CD8 + T cells, whereas the
low affinity and high affinity receptor are expressed on the activated
lymphocyte [30]. In addition, some cells can inductively express high
affinity receptor because the expression of IL-2 Ra is induced by the
stimulation of antigen and cytokines [29], but the removal of antigens
down-regulates the expression of IL-2Ra-related genes leading to the
disappearance of high-affinity IL-2R from the cell membrane and a state
that is not responsive to IL-2. Therefore, based on the different ex-
pression of IL-2R subunits on different T cells, it achieves the flexible
regulation of different types of T cells by different concentration of IL-2,
which is the important basis for the application of it to treat different
disease. For instance, resting NK cells and CD8 + T cells, as important
cells to exert cytotoxic effects to promote the immune response and kill
tumor cells, express intermediate affinity receptors, which are slightly
less sensitive to IL-2 and can only be activated by high-dose IL-2.Con-
versly, the cells expressing high affinity receptors are sensitive to IL-2
and can be activated by low-dose IL-2, especially Treg cells, as a critical
factor to maintain immune tolerance, constitutively express high affi-
nity receptors, which confers Treg cells dominance at low-dose IL-2, so
Treg cell has superior efficacy to compete with other cells to bind IL-2
[29,42].

The signal transduction of IL-2 combined with IL-2R occurs through
three major pathways including [28-30] JAK-STAT signaling pathways
(JAK: Janus kinase), PI3BK/AKT/mTOR signaling pathways (PI3K:
phosphatidylinositol 3 kinase; mTOR: mammalian target of rapamycin;
AKT: protein kinase B) and MAPK/ERK signaling pathway (MAPK:
mitogen-activated protein kinase; ERK: extracellular regulated protein
kinases) to regulate the development, proliferation, survival and dif-
ferentiation of cells. Pro-inflammatory cytokine activation of the JAK/
STAT signal transduction pathway is a critical event in the pathogenesis
and progression of RA [52].
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2.2. The pleiotropic functions of IL-2

Since the discovery of IL-2, it has been considered to be a pro-in-
flammation factor, which plays an essential role in activating the ef-
fector arms of the immune system by stimulating varieties of cells in-
cluding effector T cells, memory cells and NK cells [28]. Based on the
ability of IL-2 to induce and enhance the number and function of NK
cells and CD8 + Tcells to exert the cytotoxicity effects to promote
immune response and kill tumor cells, it has been extensively developed
as a potential immunotherapy for the treatment of cancer [53-55]. And
because resting NK cells and CD8 + T cells are slightly less sensitive to
IL-2 and can only be activated by high-dose IL-2, therefore, the earliest
therapeutic application of IL-2 in clinical practice was to treat cancer at
high-dose and some patients had benefited remarkably
[53,54,56].However, the further clinical application of it was greatly
limited because of vascular leakage syndrome (VLS) and manifestations
of cytokine storms,which were caused by the toxic effect of high-dose
IL-2 [31].

After decades of in-depth researches on the function of IL-2, it has
gradually been discovered that IL-2 is not only a pro-inflammatory
factor, but can also act as an anti-inflammatory factor to exert the
pleiotropic effects. In 1993, Sadlack et al. [57] reported that knockout-
IL-2 -gene mice would lead to severe lymphocyte proliferation and
suffered from autoimmune disease rather than immune deficiency,
which first pointed that IL-2 could act as an anti-inflammatory cytokine
and revealed the pleiotropic function of IL-2. Further studies began to
question the main or only function of IL-2 is to stimulate the in-
flammatory response in autoimmune inflammation and with the con-
tinuous researches on the structure and function of IL-2 in the past
years, the immunotherapy of IL-2 has re-entered research field of
people [28-31]. Subsequent studies of rodent models with IL-2 or IL-2
receptor deficiency highlighted the key role of IL-2 in protective im-
munity and the particular effectiveness of Treg-mediated immune tol-
erance [30,42,51].Especially, the discovery of the opposite effects of IL-
2 on the Th17 and Treg cells(IL-2 can promote the differentiation of
Treg cells while inhibiting the differentiation of Th17) has further
clarified the role of IL-2 in exerting anti-inflammatory effects and
maintaining immune tolerance [30].

All these findings showed the pleiotropic function of IL-2, and high-
dose IL-2 can activate effector T cells to promote autoimmunity, while
low-dose IL-2 can exert essential function to control immune responses
and maintain self-tolerance, meaning that the dose of IL-2 may be a
driver of the imbalance between autoimmunity and immune tolerance
[58]. The role of IL-2 has shifted from a cytokine that can activate ef-
fector T cells to fight cancer to a cytokine that can control autoimmune
inflammatory response [31,59,60], and the latter is much more im-
portant. More and more studies attach importance to the essential
function of low-dose IL-2 to control autoimmune responses and main-
tain self-tolerance, which can be a potential therapy in treating auto-
immune disease including RA.

3. The role of IL-2 -mediated immune tolerance in RA

With the understanding of the pleiotropic function of IL-2, espe-
cially its anti-inflammatory effect, more and more studies have found
that it can be used as an immunomodulatory drug to treat autoimmune
diseases, which is also expected to be applied in the treatment of RA.
Therefore, exploring the role of IL-2 in mediating immune tolerance
and its therapeutic prospect in RA has become a research hotpot.

3.1. IL-2 and the balance of Th17/Treg

Studies have proved that Th17 cells and Treg cells can exert dif-
ferent effects [22,23].Th17 cell has the ability to enhance the influx of
inflammatory cells such as neutrophils leading to systemic in-
flammatory response and stimulate specific B lymphocytes to produce
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autoantibodies which can promote auto-immune response [61,62], and
the pro-inflammation factor IL-17 secreted by Th17 cells plays a critical
role in autoimmune disorders [63,64] and has been shown to be a key
factor in collagen-induced arthritis (CIA), an animal model of RA
[65,66]. High levels of serum IL-17 and increased number of Th17 cells
in peripheral blood have been reported in RA [64]. Treg cell is defined
as CD4 + CD25 + Foxp3+ Treg cell, which includes thymus-derived
Tregs (tTregs) and peripherally derived Tregs (pTregs) [67], based on
the anatomical origin. Treg cells can maintain the immune tolerance by
inhibiting the stimulatory capacity of antigen-presenting cells and
producing anti-inflammatory cytokines such as IL-10 and transforming
growth factor-f (TGF-P) to inhibit immune responses [67-69],and the
decreased number of Treg cells in patients with autoimmune diseases is
significantly negatively correlated with disease activity [70,71] sug-
gesting that the breakdown of immune tolerance mediated by de-
creased Treg cells may be an important factor in the pathogenesis of RA.
It has been confirmed that, as with other autoimmune diseases, the
proportion of Th17/Treg in peripheral blood is indeed increased in
patients with RA [12,26,72], which can be a therapeutic target [73,74].

Treg cells and Th17 cells share a common precursor cell and sig-
naling pathway mediated by TGF-p [75], but the differentiation of the
common precursor into pathogenic Th17 cells or into Treg cells is a
different fate choice which may be associated with IL-2. IL-2R on the
surface of Treg cells is sensitive to IL-2 providing a basis for IL-2 to
affect the development of Treg cells, and there have been many ob-
servations confirmed that IL-2 can regulate the differentiation, devel-
opment and expression of Treg cells and Th17 cells [31,51,57,76,77].
Sadlack et al. [57] found that Treg cells do not exist in mice with IL-2-
deficient or IL-2R-deficient, which suggested that IL-2 can promote the
differentiation of Treg cells. On the contrary, Laurence et al. [76] found
that blocking IL-2 in the spleen cell culture of mice could increase the
proportion of cells that produce IL-17, but the addition of exogenous
human IL-2 reversed this effect, which revealed that the presence of IL-
2 strongly discourage the differentiation of Th17. It has been confirmed
that Th17 and Treg cells have different cell markers: FOXP3 is the
marker of Treg cells while acid-related orphan receptor yt (RORyt,
known as RORc in human) is the marker of Th17 cells. TGF-p is an
essential factor for inducing the expression of FOXP3 and RORyt
[78-801, but the two transcription factors, STAT5 and STAT3 [81,82],
control the expression of FOXP3 and RORyt, respectively. Foxp3, which
can induce the expression of IL-2Ra, is only expressed on the Treg cells,
and the expression of it is regulated by the JAK-STATS signaling
pathway [83-86]. The expression of programmed cell death protein
1(PD-1) and cytotoxic T-lymphocyte-associated protein 4(CTLA-4) on
the Treg cells inhibit the PI3K-AKT-mTOR signaling pathway making
Treg cells more dependent on IL-2-mediated JAK-STAT5 pathway
[87-89]. Thus, after IL-2 interacts with IL-2R on Treg cells, the complex
will activate JAK and preferentially induce the phosphorylation of
STATS to bind to the promoter and introns in the Foxp3 gene leading to
the expression of Foxp3 to promote the maturation and differentiation
of Treg cells [52,85,90].However, IL-2 can inhibit the phosphorylation
of STAT3, which is required for the expression of RORyt. STAT3 can be
activated by IL-6 and IL-23, and then the activated STAT3 can promote
the expression of RORyt and derive cells towards to the Th17 subsets
[76,91,92]. In summary, the combination of IL-2 and TGF-f can induce
naive T cells to differentiate into Treg cells by STAT5 and the addition
of TGF-p together with IL-6 leads to the differentiation of Th17 by
STATS3. Therefore, IL-2 is able to inhibit the development of Th17 cells
and promote the development of Treg cells (See Fig. 1).

Considering that IL-2 can exert an opposite role in regulating the
differentiation of Th17 and Treg cells, thus providing an important cell
therapy targeted to Th17 and Treg cells in RA. Compared with biolo-
gical agents such as anti-TNF targeting to pro-inflammation factor, low
dose IL-2 therapy achieves remission of autoimmune disease activity
from a higher level to reduce the production of pro-inflammation factor
by expanding Treg cells and promoting the balance between Th17 and
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Fig. 1. Treg cells and Th17 cells have the common precursor cell, but they have different cell marker on the surface.FOXP3 is the marker of Treg cells while RORyt is
the marker of Th17 cells. TGF-B is an essential factor for inducing the expression of FOXP3 and RORyt, but STAT5 and STAT3 control the expression of FOXP3 and
RORyt respectively. Foxp3 is regulated by the JAK-STATS5 signaling pathway by IL-2.But RORyt is induced by the JAK-STAT3 signaling pathway by IL-6,and STAT3
can be suppressed by IL-2.Therefore,the presence of IL-2 can promote the differentiation of Treg cells via STAT5 mechanism while inhibit the differentiation of Th17

cells by preventing the activation of STAT3.

Treg cells to induce immunomodulatory and maintain immune toler-
ance. Therefore, IL-2 represents a higher advantage in the treatment of
autoimmune diseases [60].

3.2. IL-2 and the balance of Tfh/Tfr

Tth cells and Tfr cells (newly discovered CD4 + T cells localized in
the germinal centers) play an extremely critical role in the formation of
lymphoid follicular germinal centers (GC) [93,94], which is important
for B cells to finish a series of reactions including affinity maturation
and class switch recombination and achieve the proliferation and dif-
ferentiation of B cells leading to the production of high-affinity anti-
bodies. And the two cells can exert an opposite effect in the regulation
of humoral immunity: Tfh cell can promote the proliferation and dif-
ferentiation of B cells and produce high affinity antibodies such as RF
and anti-CCP to mediate the destruction of cartilage and bone in pa-
tients with RA [95,96], but Tfr cells, a kind of negative regulatory cell,
have the potential to maintain immune tolerance by inhibiting the GC
response and suppressing the production of these high-affinity anti-
bodies [97-99]. The dysregulation of the number and function of Tfh
cells and Tfr cells can lead to the aberrant GC response and over-pro-
duction of abnormal autoantibodies, eventually causing autoimmune
diseases including RA [100-102].

Tfh cells are defined as Bcl-6"CXCR5™IL-2Ra'®“CD4™ T cells
(CXCR5: CXC Chemokine Receptor 5, Bcl-6: B-cell lymphoma 6 protein)
[29,103,104].1t has been confirmed that the absence of Bcl-6 can make
CD4 + T cell fail to differentiate into Tth cell showing that the master
transcription factor Bcl-6 is required for the development of Tfh cell
[105-107].Bcl-6 is induced and activated by the JAK-STAT3 mediated

pathway [108] under the stimulation of the IL-21 and IL-6 [109].IL-21
and IL-6 can activate JAK leading to the phosphorylation and activation
of STAT3, and then the pSTAT3 binds to the locus gene of Bcl-6 to drive
the differentiation of Tfh cell [109,110]. Bcl-6 and Blimp-1 are mu-
tually exclusive [111] and the latter is activated by IL-2 via the JAK-
STATS5 pathway [112]. However, low expression of IL-2Ra on the
surface of Tfh cells can reduce the synthesis of Blimp-1 caused by
STATS signal transduction, making it possible for the differentiation of
Tfh cell to mostly depend on Bcl-6 [113]. In view of the expression
characteristics of Bcl-6, the use of IL-2 can effectively inhibit the dif-
ferentiation of Tth cell [29,114,115]. It may be based on the following
mechanisms: on the one hand, IL-2 can preferentially activate STAT5
and inhibit STAT3, resulting in a decrease in binding to the locus gene
of Bcl-6 [113]; on the other hand, IL-2 can promote the expression of
Blimp-1 to reduce the expression of Bcl-6 [114]. In addition, Tth cells
have minimal mTOR activity, so IL-2 can activate AKT and mTORC1
(mechanistic target of rapamycin complex 1) in CD4+ T cells to pro-
mote the differentiation of Thl cells instead of Tfh cells [116](See
Fig. 2).

Tfr cells are special subpopulation of T regulatory cells, which not
only express characteristic surface molecules of Tfth cells, such as
CXCRS5, Bcl-6 [93], but also express related surface molecules of Treg
cells, such as Foxp3 and CTLA-4 [98].1t has been confirmed that FOXP3
and Bcl-6 are both important transcription factor for the differentiation
of Tfr cells. In addition, the mTORC1-pSTAT3-TCF-1-Bcl-6 transcription
axis has been showed to be essential for the regulation of Tfr cell dif-
ferentiation from conventional Treg precursors [117]. The mTOR, a
serine/threonine protein kinase, has the impact on the growth, pro-
liferation, and survival of cells [118], and is activated in rheumatoid
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Fig. 2. Bcl-6 is required for the development of Tfh
cells, which is induced and activated by the JAK-
STAT3 mediated pathway under the stimulation of
the IL-21 and IL-6. Bcl-6 and Blimp-1 are mutually
exclusive and the latter is activated by IL-2 via the
JAK-STATS5 pathway. IL-2 can effectively inhibit the
differentiation of Tth cell by preferentially activating
STATS5, which can inhibit STAT3 resulting in a de-
crease in binding to the locus gene of Bcl-6, but
promoting the expression of Blimp-1 to further re-
duce the expression of Bcl-6. In addition, Tfh cells
JAK ) have minimal mTOR activity, and IL-2 can activate
\L AKT and mTORC1 in CD4+ T cells to promote the
differentiation of Thl cells instead of Tfh cells.
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diseases [119].And mTOR forms two functionally distinct complexes:
mTORC1 and mTORC2 (mechanistic target of rapamycin complex 2),
which have distinct scaffolding subunits, Raptor and Rictor, respec-
tively [120]. Xu et al. [117] found that mTORC1 but not mTORC2 had a
positive regulatory effect on the differentiation and function of Tfr cell
by deleting Raptor or Rictor. And their study demonstrated that
mTORClinduced the expression of the transcription factor T cell factor
1(TCF-1) by the phosphorylated STAT3, and subsequently TCF-1 com-
bined with Bcl-6 promoter to induce Bcl-6 expression and initiate the
differentiation of Tfr cells. The effect of IL-2 on the differentiation of Tfr
cells is not very clear at present. Some think IL-2 can positively influ-
ence the differentiation of Tfr cells in the GC [29]. Because Tfr cells
derive from Treg cells [93,121], and Treg cell is up-regulated by IL-2,
which may in turn positively increase the directed transformation of Tfr
cells. In addition, IL-2 can promote the expression of FOXP3 to promote
the differentiation and function of Tfr cell. While others think IL-2 in-
hibits the conversion of Treg cells into Tfr cell [100,122]. First, the IL-2-
JAK-STATS5S signal pathway can promote the expression of Blimp-1,
which suppresses the level of Bcl-6 and leads to the down-regulation of
Tfr cells. Second, there are many factors to inhibit the PI3K/mTOR
signal pathway such as PD-1, CTLA-4 and Roquin [87,123], thus, it is
difficult for IL-2 to influence Tfr cells by activating the PI3K/AKT/
mTORC1 signaling pathway. Interestingly, high concentration of IL-2 at
the peak of influenza virus infection prevents Treg cells from differ-
entiating into Tfr cells through a Blimpl-dependent mechanism, but
with the level of IL-2 decrease, Treg cells up-regulate the expression of
Bcl-6 and differentiate into Tfr cells [124].Therefore, the effect of IL-2
on Tfr cells is complex, which may be related to the comprehensive
environment, the source of cells,multiple signaling mechanisms and
different diseases of body(See Fig. 3).

Studies have shown that the number of Tth cell in the peripheral
blood of RA patients was significantly higher than that of the normal
control groups [125,126],and the presence of Tfh cell in RA synovial
tissue is closely related to the severity of synovial pathology [127,128],
indicating that Tfh cell was involved in the progression of RA. The
decreased number of Tfr cells in patients with RA has been described
[108,129]. And Ding et al. [130] found that the number of Tfh and
auto-reactive B cells was decreased, and the level of IL-21 and the
concentration of RF in serum was also decreased after transferring Tfr
cells into model mice, which revealed the protective role of Tfr cells.

But, the increased Tfr cells in patients with RA have also been reported
[27,131]. So the role of Tfr cells in RA is controversial. However, it is
believed that the imbalance between Tth cells and Tfr cells in circula-
tory and synovial tissue are involved in the pathogenesis and progres-
sion of RA [27,100,108,132].Therefore, the therapy targeted to restore
the balance between Tfh cells and Tfr cells to prevent self-reactive Tfh
cell responses can become a potential method for treating RA [100].
Due to the regulatory effect of IL-2 on Tth cells and Tfr cells, it may be
valuable for improving the outcome of patients with RA by reversing
the imbalance of Tfh/Tfr cells [133,134].

4. The therapeutic prospect of low-dose IL-2 in treating RA

In the past years, treatment strategies for RA have dramatically
changed [135,136].The drugs commonly used in the international
treatment of RA have developed from non-steroidal anti-inflammatory
drugs (NSAIDs) and glucocorticoids to DMARDs, these methods have
achieved a certain effect [1-3], but the remission rate is not satisfactory
[137,138]. Recently a Chinese cross-sectional observational study
[137], including a total of 1945 RA patients who had taken at least one
DMARDS from 40 large hospitals, showed that the proportions of pa-
tients who fulfilled the 28 Joint Disease Activity Score (DAS28), Clin-
ical Disease Activity Index (CDAI), Simplified Disease Activity Index
(SDAI) and American College of Rheumatology/European League
Against Rheumatism (ACR/EULAR) remission criteria was only
10.90%, 6.17%, 5.04% and 1.75%, respectively. The result indicated
that the rate of disease activity remission of RA treatment is extremely
low. Although the development of biological agents targeting to pro-
inflammatory factors involved in the pathogenesis of RA has profoundly
improved the treatment strategies of the disease [139], the risk of in-
fection and malignant tumors after long term immunosuppression and
the huge economic burden have limited the wide application of it
[140], and in addition some patients discontinue biological agents due
to loss of response or intolerance, it is necessary to weigh the ad-
vantages and disadvantages of early use of alternative biological drugs
[10]. Accordingly, new and economically available therapies are ur-
gently required to realize the sustained remission of RA.

We have introduced that IL-2 can regulate the balance of Th17 /
Treg and Tfh / Tfr to exert the anti-inflammatory effect and maintain
immune tolerance as a potential method for the treatment of RA aiming
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Fig. 3. Tfr cells exert important effects to maintain immune tolerance by inhibiting the Tfh cells and B cells to suppress GC response and the production of high-
affinity antibodies. The effect of IL-2 on the differentiation of Tfr cells is not very clear. On the one hand, Treg cells are considered to be precursors of Tfr cells, and IL-
2 can promote the development of Treg cells to increase the level of Tfr cells, and IL-2 can up-regulate the expression of FOXP3 to promote the function of Tfr cells.
On the other hand, the mTORC1-pSTAT3-TCF-1-Bcl-6 transcription axis is essential for the regulation of Tfr cell differentiation from conventional Treg precursors,
but PD-1, CTLA-4 and Roquin inhibit the PI3K/mTOR signal pathway, thus, it is difficult for IL-2 to promote the conversion of Treg cells into Tfr cells. The regulatory

mechanism of Treg cells needs further exploration.

to provide a new way to achieve targeted treatment of rheumatoid
arthritis by low-dose IL-2.

4.1. The clinical application of low-dose IL-2

Because of its potent to induce and enhance the number and func-
tion of NK cells and CD8 + Tcells to exert the cytotoxicity effects
leading to the autoimmune response, IL-2 has been developed as a
potential immunotherapy for the treatment of cancer at high dose,
however, the use of it was limited by serious adverse reactions, thus, to
avoid the severe side effects of the activation of effector T cells (Teff)
caused by high-dose IL-2, it was thought that low-dose IL-2 could be the
solution to reduce the toxic effect of IL-2. And an in vitro IL-2 sensitivity
test on Teff and Treg cells found that IL-2 has dual regulatory functions
on Teff and Treg cells: the high-dose IL-2 can increase the content of
Teff cell to exert the pro-inflammatory effect, in contrast, the low-dose
IL-2 can increase the number of Treg cell to exert the anti-inflammatory
effect [42], further confirming that low-dose IL-2 are an important
factor to drive the imbalance between autoimmunity and immune tol-
erance towards immune tolerance. The mechanism is that Treg cells
constitutively expresses high affinity receptors, meaning that the sur-
face of Treg cells expresses a large amount of IL-2Ra which can enhance
the affinity of IL-2R for IL-2 and effectively compete with other cells to
bind IL-2,thus Treg cells are sensitive to IL-2 and low-dose IL-2 can
activated Treg cells preferentially [29,42,89,141]. Moreover, the sig-
naling induced by low-dose IL-2 is sufficient to support the develop-
ment of Treg, while it is not sufficient to support the response of Teff
[142]. Several observations have supported that low-dose IL-2 can also
be used to treat disease including type 1 diabetes (T1D) [32,33], HCV-
induced vascuitis [34] and graft - versus - host disease (GVHD) [35,36],
which have achieved significant clinical efficacy in recent years.

It has been confirmed that the use of low-dose IL-2 can increase the
number of CD4 + CD25 + Foxp3+ Treg cells leading to a significantly
reduced ratio of Th17 / Treg cells in patients with SLE [37], primary
Sjogren's syndrome [143] and dermatomyositis/polymyositis [144],
proving that the clinical efficacy of low-dose IL -—2 can increase the
selectivity of Treg cell to realize the balance of Th17 / Treg. IL-2 can
also regulate the balance of Th17 / Treg and Tth / Tfr to exert the anti-
inflammatory effect and maintain immune tolerance as a potential
method for the treatment of RA. Kosmaczewska et al. [145] found the
combination of IL-2 and biological agents can promote the growth of
Treg cells in the peripheral blood of patients with RA to conver the
Th17 cell-mediated immune imbalance into the Treg cell-mediated
immune tolerance, revealing the potential clinical therapeutic appli-
cation of IL-2 in patients with RA. Recently, Rosenzwajg et al. [38]
assessed the safety and clinical efficacy of low-dose IL-2 therapy in 46
patients with autoimmune disease (including 4 patients with RA) via a
single and open clinical trial, and all patients received low-dose IL2 (1
million IU/day) for 5 days, and followed by injected every two weeks
for 6 months. Finally, it was found that under the induction of this dose
and treatment scheme, the Treg cells were selectively activated and
expanded without impacting on the level of Teff cells, and although
some patients experienced mild allergic reactions during the treatment
process, but did not observe serious adverse events, further to demon-
strate the protective role of low-dose IL-2 and highlight that low-dose
IL-2 might be effective and well tolerated in the treatment of RA.

Therefore, the low-dose IL-2-based immunotherapies have potential
clinical therapeutic implications in patients with RA by selectively
targeting on Treg cells to induce immunomodulatory and maintain
immune tolerance. Despite of the promising clinical application of low-
dose IL-2 therapy, it is still a new field with some challenges. First, the
optimal dose, timing and treatment schedule of low-dose IL-2
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Fig. 4. JES6-1 binds to the region of IL-2 forming the IL-2/JES6-1 complex, and after encountering with cells expressing sufficient IL-2Ra on the surface (such as
Treg cells) JES6-1 will be replaced by IL-2Ra.Then IL-2Ra recruits IL-2R[3 and yc to form the functional complexes to conduct the signals. In addition, IL-2/JES6-1
complex fails to interact with the IL-2RBy on the cells of expressing no IL-2Ra (such as CD8 + Tcells and NK cells) because of the steric hindrance. It guarantees that

IL-2 can selectively activate Treg cells without affecting effector T cells.

administration to achieve disease remission without other adverse re-
actions is still inconclusive, and needs more abundant clinical data to
support it. Second, given the pleiotropic function of IL-2, there is still a
risk of activation of the effector arm of the immune system, what results
from the relatively low selectivity of IL-2 to Treg cells, and the long-
term efficacy and safety of it remains to be determined in animal and
clinical trials. In addition, due to the short half-life of IL-2, it may be
necessary to increase the dose or shorten the interval between doses to
achieve the remission of disease, which will also increase the toxic ef-
fect of IL-2 at the same time and is unavoidable to influence the number
and function of Teff cells in a dose-dependent manner leading to the off-
target effects and inflammation response. Therefore, the therapeutic
application of low-dose IL-2 in the treatment of RA has some problems,
and it is worthy to be explored other novel IL-2-related therapies such
as IL-2/antibody complexes and IL-2 muteins which more selectively
expand Treg cells to increase the selectivity of Treg cell stimulation and
to extend the time duration of IL-2 in the circulation as well as reduc-
tion of the toxicity of IL-2 to minimize the associated risks, which have
emerged as important applications in autoimmune diseases.

4.2. Therapeutic prospect for the application of IL-2 therapy

A more elaborate approach to increase the selectivity of Treg cell
stimulation and inhibit the activation of the effector arm of the immune
response is to independently block the effector arm by neutralizing IL-
2/monoclonal antibody (IL-2/mAb) complexes. One kind of the IL-2 /
mADb complexes, produced by the combination of IL-2 and anti-IL-2
antibodies JES6-1(like antibody 5344 in human), can activate Treg
cells preferentially to maintain the biological function of Treg cells
[146-148],which has showed in several autoimmune diseases, in-
cluding type 1 diabetes in non-obese diabetic mice (NOD mice) [149],
experimental autoimmune encephalomyelitis (EAE) [150] and experi-
mental myasthenia [151].There are also studies investigating the in-
teraction of the IL-2 complex with CIA mice. They found that after in-
jecting the IL-2/JES6-1 complexes into CIA mice, the expansion of
CD4 + Foxp3 + Treg cells in the peripheral blood can boost largely

[152] and the development of autoimmune inflammatory responses can
be suppressed [153]. It may also be beneficial for RA. The mechanism
of IL-2 / JES6-1 complexes to selectively increase the number of Treg
cells is that JES6-1 binds to the region of IL-2 that contacts with the
other two IL-2R subunits and JES6-1 can be replaced by IL-2Ra after
encountering with cells expressing sufficient IL-2Ra on the surface
(such as Treg cells), and then recruits IL-2Rf and vyc to form the func-
tional complexes to promote the expression of gene in Treg cells
[154-156]. In addition, the binding between IL-2/JES6-1 complex and
IL-2RBy was suppressed by steric hindrance which blocks the binding
site of the IL-2R} leading to the failure to target cells mainly expressing
IL-2RBy (such as NK cells and CD8 + Tcells). Similar IL-2 / mAb
complexes also include IL-2/F5111.2 complex [157] and IL-2/mAb
fusion-JY3 IC [158] (See Fig. 4).In contrast, the mouse monoclonal
antibody against mouse IL-2 named S4B6 has distinct functions from
JES6-1. Complexes of IL-2 with the S4B6 monoclonal antibody can
expand effector T cells expressing high level IL-2Rfy by blocking the
interaction between IL-2 and IL-2Ra, which leads to a strong stimula-
tion and expansion of CD8+ T cells and NK cells [146]. Thus, some IL-
2/mAb complexes like IL-2/JES6-1 complexes can be applied as an IL-
2/mAb complexes-based immunotherapy to preferentially expand Treg
cells without affecting the number or function of effector T cells in mice
to induce specific immune tolerance, which have a great application
prospect and are worthy to be explored in human patients.

The half-life of IL-2 is very short, and the complex formed by
binding to the high-affinity IL-2R on the cell surface is quickly inter-
nalized (t;,210-20 min) [28]. To solve the problem, fusions of IL-2 with
carrier proteins, such as the Fc domain of IgG antibodies have been
applied [159,160]. In addition, it has been confirmed that some IL-2
muteins(such asN88D and N88R) can greater selectivity target to Treg
cells with relatively mild efficacy and low toxicities by modulating IL-2-
mediated immune response than wild-type IL-2 [161,162].

5. Conclusions and perspectives

The understanding of IL-2 has shifted from pro-inflammatory
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cytokines that induce effector cell reactions to anti-inflammatory cy-
tokines that maintain immune tolerance, and the latter effect makes it
possible to apply low-dose IL-2 to treat autoimmune disease, but the
application for autoimmune diseases is still a new attempt especially for
the treatment of RA. It is difficult to achieve and maintain the balance
between the efficacy and pleiotropic function of IL-2, and the risk of IL-
2 to activate the effector arms of the immune system cannot be ignored,
so it is important to pay attention to which function dominates when
using IL-2 to treat diseases, and ensuring safety is the primary problem
we should address. It needs further exploration to turn challenges into
opportunities. On the one hand, it is necessary to explore the optimal
dose, timing and treatment scheme of low-dose IL-2 administration in
patients with RA by the clinical application to minimize the toxicity of
IL-2 at the greatest extent and ensure safety. On the other hand, it also
needs to evaluate the safety and the clinical benefits of IL-2/mAb
complexes and other novel therapy in animal and clinical trials to
provide new therapeutic ideas. Future studies will be needed to better
understand the biology of IL-2 in order to realize the targeted treatment
to RA and it is expected that IL-2 can be the potential targeted treat-
ment for RA more effective and safer in the future as the new revolution
in immunoregulation.
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