ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России Кафедра неонатологии ФУВ

ИНТЕРЛЕЙКИН-2: ОПЫТ КЛИНИЧЕСКОГО ПРИМЕНЕНИЯ В НЕОНАТОЛОГИИ

Пособие для врачей

Санкт-Петербург 2019

ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России Кафедра неонатологии ФУВ

М.В. Дегтярёва, Е.Н. Байбарина, И.Г. Солдатова, Н.В. Ашиткова

Интерлейкин-2: опыт клинического применения в неонатологии

Пособие для врачей

Санкт-Петербург СИНЭЛ 2019 УДК 616-053.31:615.1/4

ББК 52.54+53.52

И73

Интерлейкин-2: опыт клинического применения в неонатологии: пособие для врачей / М.В. Дегтярёва, Е.Н. Байбарина, И.Г. Солдатова, Н.В. Ашиткова; ГБОУ ВПО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, Кафедра неонатологии ФУВ. — Санкт-

Петербург: СИНЭЛ, 2019. – 47, [1] с.

ISBN 978-5-6043076-5-6.

1. Дегтярёва, Марина Васильевна

Данное пособие для врачей содержит информацию о 15-летнем клиническом опыте применения препарата рекомбинантного интерлейкина-2 человека - Ронколейкина® в неонатологии.

Кратко освещены иммунобиологические характеристики интерлейкина-2 и его роль в различных механизмах иммунной защиты организма.

Пособие основано на результатах клинического применения препарата Ронколейкин® у новорожденных детей при различных нозологических формах в отделениях реанимации и интенсивной терапии новорожденных, патологии новорожденных и недоношенных детей и хирургии новорожденных детей Детской Клинической больницы №13 имени Н.Ф. Филатова, Городской больницы №8 Департамента здравоохранения города Москвы, а также в Кубанском государственном медицинском университете г. Краснодара.

Книга рассчитана на неонатологов, анестезиологов-реаниматологов, врачейпедиатров и клинических иммунологов, клинических фармакологов и организаторов здравоохранения. Материалы настоящего издания могут быть рекомендованы для преподавания в медицинских ВУЗах.

ISBN 978-5-6043076-5-6.

© ООО «БИОТЕХ», 2019

Фото на обложке: http://en.biomanantial.com

СОДЕРЖАНИЕ

СПИСОК СОКРАЩЕНИЙ4
ВВЕДЕНИЕ5
ОСОБЕННОСТИ ИММУННОЙ СИСТЕМЫ НОВОРОЖДЕННЫХ ДЕТЕЙ7
БИОЛОГИЧЕСКИЕ СВОЙСТВА ИЛ-211
ПАТОГЕНЕТИЧЕСКОЕ ОБОСНОВАНИЕ ЦЕЛЕСООБРАЗНОСТИ ПРИМЕНЕНИЯ ПРЕПАРАТА РОНКОЛЕЙКИН® ПРИ ЛЕЧЕНИИ НЕОНАТАЛЬНЫХ ИНФЕКЦИЙ13
РОНКОЛЕЙКИН®: ФАРМАКОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА16
КЛИНИЧЕСКИЙ ОПЫТ ПРИМЕНЕНИЯ ПРЕПАРАТА РОНКОЛЕЙКИН® В НЕОНАТАЛОГИИ17
ОЦЕНКА ЗАТРАТ НА ЛЕЧЕНИЕ НЕОНАТАЛЬНЫХ ИНФЕКЦИЙ
ЛИТЕРАТУРА43

СПИСОК СОКРАЩЕНИЙ

АПК - антиген-презентирующие клетки

- базисная терапия БТ

- валовый внутренний продукт ВВП

- внутрижелудочковые кровоизлияния ВЖК

- гестационный возраст ГΒ

- гемодинамически значимый функционирующий ГЗ ФАП

артериальный проток - доверительный интервал ДИ

- искусственная вентиляция лёгких ИВЛ

- интерлейкин ИЛ

ИФА

- иммуноферментный анализ - интерферон – α - интерферон – γ ИФН-а ИФН-у

- отделение реанимации и интенсивной терапии ОРИТН

новорожденных

- отделение патологии новорожденных ОПН

и недоношенных детей

- системный воспалительный ответ **CBO**

- точный двухсторонний критерий Фишера ТКФ

- фактор некроза опухоли альфа ΦΗΟ-α - циклический аденозинмонофосфат пΑМФ - центральная нервная система ЦНС - экстремально низкая масса тела ЭНМТ

- cost benefit analysis, анализ «затраты-выгода» CBA

CD - cluster of differentiation

- иммунорегуляторный индекс (ИРИ) CD4+/CD8+

- цитотоксические Т-лимфоциты (Т-киллеры) СТL (ЦТЛ)

- confidential interval (доверительный интервал, ДИ) CI

Ιg

иммуноглобулинрецептор для интерлейкина-2нижний квартиль IL-2R

LO

Me - медиана

NK-клетки - естественные киллеры - Т-хелперы 1-го типа Th1 - Т-хелперы 2-го типа Th2 UQ - верхний квартиль

U-test - непараметрический тест Манна-Уитни

ВВЕДЕНИЕ

Бактериальные инфекции новорожденных, по-прежнему, остаются одной из самых актуальных проблем современной медицины. Несмотря на огромный прогресс в науке, появление новых диагностических методов и различных схем лечения, неуклонная тенденция к росту числа больных и стабильно высокой летальности в настоящее время сохраняется. Данная ситуации усугубляется возрастающим количеством устойчивых к антибиотикам инфекций.

Сепсис и пневмония считаются наиболее тяжёлыми проявлениями гнойно-септических заболеваний у новорожденных и занимают существенное место в структуре заболеваемости и смертности детей.

Сепсис является основной причиной смерти в отделениях интенсивной терапии некоронарного профиля и занимает при этом 11-е место среди всех причин летальности. Бактериальная и грибковая инфекции остаются на сегодняшний день одной из ведущих причин летальности и инвалидизации среди новорожденных детей. В ряде когортных исследований было показано, что, несмотря на малое число случаев микробиологически подтверждённого сепсиса (1,9-3,7%), более 50% детей имели клиническую картину сепсиса и получали массивную антибактериальную терапию. Унификация критериев диагноза позволила составить представление о распространённости сепсиса в отдельных регионах мира. В США ежегодно диагностируется более 700 000 случаев заболевания тяжёлым сепсисом, т. е. около 2000 случаев ежедневно. Септический шок развивался в 58% случаев тяжёлого сепсиса.

Уровень летальности среди недоношенных детей с неонатальными инфекциями составляет, в среднем, от 18% до 20%. Среди недоношенных детей с экстремально низкой массой тела, перенесших сепсис в неонатальном периоде, показатель инвалидизации находится

в интервале 30-80%. Высокая частота таких серьёзных осложнений в неонатальном периоде, как внутрижелудочковые кровоизлияния, гемодинамически значимый функционирующий артериальный проток (ГЗ ФАП), необходимость длительного проведения искусственной вентиляции лёгких (ИВЛ), привела к осознанию важности разработки адъювантных методов терапии неонатального сепсиса. В настоящее время разработаны и внедрены в практику терапевтические подходы, позволяющие снизить летальность пациентов с сепсисом, при этом быстрое и точное установление диагноза может иметь решающее значение для выбора адекватной антибактериальной и посиндромной терапии. Сравнительно недавно были разработаны чёткие критерии иммунной недостаточности у детей различного гестационного возраста с неонатальными инфекциями, позволяющие назначать иммуномодулирующие препараты своевременно и на основе персонализированного подхода у детей с инфекционной патологией.

Сегодня в условиях распространения устойчивости бактерий к антибиотикам и ограничения финансирования здравоохранения необходим поиск новых подходов и альтернативных методов к ведению и оптимизации лечения новорожденных детей с инфекционными заболеваниями. Клинико-экономические аспекты ведения детей с неонатальными инфекциями в нашей стране в настоящее время изучены недостаточно.

ОСОБЕННОСТИ ИММУННОЙ СИСТЕМЫ НОВОРОЖДЕННЫХ ДЕТЕЙ

К факторам риска развития бактериальных инфекций новорожденных относятся: гестационный возраст менее 32 недель; масса тела менее 1500 граммов; внутриутробное инфицирование; травматизация в родах; преждевременный разрыв околоплодных оболочек, безводный период более 12 часов; лихорадка у матери в родах; развитие хорионамнионита или эндометрита у матери в раннем послеродовом периоде, тяжёлая перинатальная гипоксия (лактат-ацидоз и снижение оценки по шкале Апгар менее 5 баллов); пребывание в отделении реанимации и интенсивной терапии новорожденных детей более 5 дней; необходимость применения инвазивных методов лечения (ИВЛ, катетеризация сосудов более 3 суток, зондирование желудка более 7 суток).

Склонность к генерализации и затяжному течению инфекционных заболеваний является характерной особенностью детей в неонатальном периоде. Генерализация инфекции у новорожденных при сепсисе обусловлена недостаточной способностью локализовать инфекционный очаг на фоне незрелых механизмов клеточного иммунитета, одним из проявлений которых является низкий синтез собственного интерлейкина-2 лимфоцитами новорожденных детей. Недостаточность ИЛ-2 у детей раннего возраста обусловливает девиацию иммунного ответа в сторону Th-2 типа; низкую функциональную активность всех популяций лимфоцитов; сниженную цитотоксичность Т-лимфоцитов и натуральных киллеров; низкую бактерицидную и фагоцитарную активность, подверженность апоптозу в условиях массивной антигенной нагрузки.

Установлено, что основой иммунопатогенеза сепсиса является цитокиновый дисбаланс, проявляющийся различной степенью активации провоспалительных и противовоспалительных цитокинов.

Сепсис у новорожденных протекает на фоне угнетения клеточного звена иммунитета, а также устойчивого преобладания системного воспалительного ответа (СВО). Степень выраженности функциональной недостаточности органов и систем при сепсисе усугубляется на фоне внутриутробной инфекции и перинатальной гипоксии, которые не только являются факторами, предрасполагающими к развитию сепсиса, но и ухудшают его прогноз. Склонность к генерализации инфекционного процесса у новорожденных детей и особенно детей с экстремально низкой массой тела (ЭНМТ) при рождении обусловлена особенностями иммунной системы.

Для *системы врождённого иммунитета* новорожденного характерны некоторые количественные и качественные особенности, делающие организм ребёнка уязвимым к развитию инфекционных заболеваний (таблица 1).

Система адаптивного иммунитета также имеет определённые особенности у новорожденных. К онтогенетическим особенностям клеточного иммунитета новорожденных относят:

- высокий уровень спонтанной экспрессии маркёров активации лимфоцитами пуповинной крови (CD25, CD71, DR);
- высокий уровень спонтанной пролиферации неонатальных лимфоцитов в реакции бласттрансформации лимфоцитов;
- затруднение кооперации Т- и В-лимфоцитов в адаптивном иммунном ответе вследствие низкого уровня экспрессии СD40-лиганда на поверхности В-лимфоцитов;
- большая доля наивных лимфоцитов с маркёром CD45RA в периферической крови;
- усиление цитотоксичности Т-лимфоцитов и естественных киллерных клеток в ответ на добавление экзогенного ИЛ-2, высокая функциональная активность лимфокин-активированных киллеров;

- отсутствие клеток иммунной памяти;
- способность В-лимфоцитов плода и недоношенного ребёнка к синтезу IgM.

Таблица 1. Особенности врождённого иммунитета новорожденных, предрасполагающие к развитию инфекций

Механизм	Онтогенетические особенности новорожденных
A	Высокая вероятность травматизации кожи и слизистых оболочек во время родов
Анатомические барьеры	Нарушения естественных барьеров при инвазивных манипуляциях в ходе реанимации (катетеризация пупочных и центральных вен, интубация трахеи)
	Ограниченный объём резервного пула полиморфноядерных лейкоцитов
	Сниженная способность к адгезии и хемотаксису нейтрофилов и моноцитов
Фагоцитоз	Сниженные показатели микробицидности и внутриклеточного киллинга бактерий гранулоцитами, особенно при осложнённом течении неонатального периода
	Дальнейшее подавление фагоцитоза как следствие перинатальной гипоксии и стресса
Система	Сниженные уровни различных компонентов комплемента
комплемента	Сниженная экспрессия рецепторов к компонентам комплемента
	Низкий уровень продукции фактора некроза опухоли- α и - β , ИЛ-12 и интерферона- α
Цитокины	Низкий уровень экспрессии рецепторов к цитокинам на поверхности Т- и В-лимфоцитов (например, рецепторов к ИЛ-2, ИЛ-4, ИЛ-6, ИЛ-7 и интерферону-α)
Естественные	Большое количество естественных киллерных клеток по сравнению с таковыми у взрослых доноров
киллерные клетки	Сниженная цитотоксическая активность естественных киллеров в периоде новорожденности

К важнейшим онтогенетическим особенностям неонатальных лимфоцитов относятся их подверженность апоптозу, низкий уровень экспрессии CD40L, крайне важный для кооперации клеток в иммунном ответе. Эти свойства обусловливают гибель неонатальных лимфоцитов путём апоптоза в условиях массивной микробной инвазии.

В работе Е. Ноtoura et al. (2011) проводился анализ периферической венозной крови доношенных новорожденных детей, которые были разделены на 2 группы в зависимости от наличия инфекционного заболевания на момент рождения и первых дней жизни. Отмечалось достоверное снижение числа Т-лимфоцитов (CD3+) у инфицированных новорожденных. Количество активированных Т-лимфоцитов, NK-клеток и В-лимфоцитов не различалось в обеих группах. Содержание Т-лимфоцитов памяти (CD4+CD45RO+) было очень низким у новорожденных вне зависимости от наличия или отсутствия инфекционного процесса, в связи с чем этот параметр не может быть использован как диагностический маркер инфекции в указанной возрастной группе, а обусловлен онтогенетическим этапом развития ребенка.

На количество лимфоцитов может оказывать непосредственное влияние цитокиновый статус новорожденных детей в ходе развития инфекции. Исследователями продемонстрировано физиологическое снижение уровня ИЛ-2 в периферической крови на 5 сутки жизни по сравнению с таковым в пуповинной крови. Тем не менее, количество CD4+ и CD8+ лимфоцитов, продуцирующих ИЛ-2, выше у относительно здоровых новорожденных детей различного гестационного возраста по сравнению со взрослыми. При тяжёлых неонатальных инфекциях и сепсисе многими авторами доказано увеличение экспрессии рецептора к ИЛ-2 на различных субпопуляциях лимфоцитов. Это может косвенно свидетельствовать о дефиците эндогенного ИЛ-2 и повышенной потребности в нём лимфоцитов.

БИОЛОГИЧЕСКИЕ СВОЙСТВА ИЛ-2

IL-2 относится к семейству цитокинов-гемопоэтинов.

ИЛ-2 является одним из основных медиаторов иммунной системы, который стимулирует активацию, пролиферацию и дифференцировку активированных Т-лимфоцитов в эффекторные Тh-лимфоциты или цитотоксические Т-клетки. ИЛ-2 может стимулировать крупные гранулярные лимфоциты, макрофаги и В-клетки. ИЛ-2 секретируется СD4+ Т-лимфоцитами. и представляет собой мономерный гликопротеин, полипептидная часть которого состоит из 133 аминокислотных остатка с молекулярной массой 15,4 кДа. По данным изоэлектрофокусирования, данный белок представлен несколькими биологически активными формами, отличающимися друг от друга зарядом в связи с разной степенью гликозилирования молекул в посттрансляционный период. ИЛ-2 человека кодируется одним геном, включающим 6684 пар нуклеотидов и состоящим из 4-х экзонов и 3-х интронов. Формирующийся в процессе трансляции предшественник ИЛ-2 содержит 153 аминокислотных остатка, 20 из которых образуют сигнальную последовательность, отсутствующую у зрелой молекулы. Полипептид имеет одну внутримолекулярную дисульфидную связь в положении 58-105, которая играет ключевую роль в создании биологически активной конформации молекулы. Замена цистеина на серин, хотя бы в одном положении, приводит к полной потере биологической активности ИЛ-2. Место связывания с рецептором данного цитокина расположено на участке цепи, включающем аминокислотные остатки 1-58. Предполагается наличие второго участка связывания с последовательностью 106-115, однако оценка вклада этого участка во взаимодействие с рецептором требует дополнительной информации. Основными клетками-продуцентами ИЛ-2 являются Т-хелперы. Субпопуляция данного клеточного типа не однородна по такому показателю, как синтез различных цитокинов. Тем не менее, приблизительно 75% её клеток синтезируют именно ИЛ-2. Около 20% цитотоксических Т-клеток также способны к продукции данного цитокина.

На синтез ИЛ-2 в этих клетках влияют не только антигены или митогены, но и ряд других биологически активных соединений. Так, цитокины (ИЛ-1, ИЛ-6, ФНО-α, ИФН), продуцируемые другими классами клеток, стимулируют продукцию ИЛ-2 преактивированными антигеном Т-клетками. Гормоны тимуса (тимозин, сывороточный фактор тимуса) обеспечивают дифференцировку незрелых тимоцитов в клетки-продуценты ИЛ-2. Ионофоры, увеличивающие уровень внутриклеточного Ca2+, также усиливают продукцию данного цитокина.

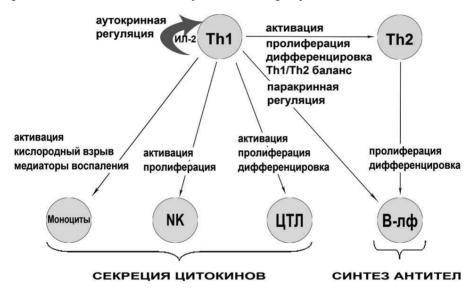


Рис. 1. Клетки иммунной системы, восприимчивые к действию ИЛ-2

Мишенями регуляторного действия ИЛ-2 являются различные субпопуляции Т-клеток, В-клетки, натуральные киллерные клетки, макрофаги (рис. 1). Основным результатом действия ИЛ-2 на покоящиеся или стимулированные антигеном или митогеном клетки яв-

ляется обеспечение их пролиферации. Именно эта биологическая активность ИЛ-2 определяет его в качестве типичного ростового фактора клеток лимфомиелоидного комплекса.

ПАТОГЕНЕТИЧЕСКОЕ ОБОСНОВАНИЕ ЦЕЛЕСООБРАЗНОСТИ ПРИМЕНЕНИЯ ПРЕПАРАТА РОНКОЛЕЙКИН® ПРИ ЛЕЧЕНИИ НЕОНАТАЛЬНЫХ ИНФЕКЦИЙ

Вопросы адекватной коррекции иммунных дисфункций при тяжёлой гнойно-септической и инфекционной патологии в неонатальном периоде, а также при персистирующих и склонных к хронизации инфекционных заболеваниях, имеют принципиальное значение. Важно отметить, что необходимость грамотной иммунокоррекции при тяжело протекающей инфекционной патологии диктуется вкладом факторов и механизмов иммунной системы в патогенез полиорганных дисфункций. При усугублении полиорганных дисфункций развивается полиорганная недостаточность — жизнеугрожающее состояние с возможным летальным исходом.

На основании ретроспективного анализа более 400 историй болезни новорожденных различного гестационного возраста (ГВ) с осложнённым течением неонатального периода (Н.В. Ашиткова, 2008-2009 гг.) было доказано, что при раннем неонатальном сепсисе абсолютная лимфопения (≤2•109/л) развивается статистически значимо чаще, чем абсолютная нейтропения (≤1,8•109/л): 19% против 3,8% (Р=0,002, ТКФ). Абсолютная лимфопения, выявленная у пациентов в неонатальном периоде, свидетельствует о тяжести инфекционного заболевания независимо от постнатального возраста детей, результатов посева крови и природы выявленного возбудителя. Неблагоприятная прогностическая значимость абсолютной лимфопении объясняется количественным дефицитом всех важнейших

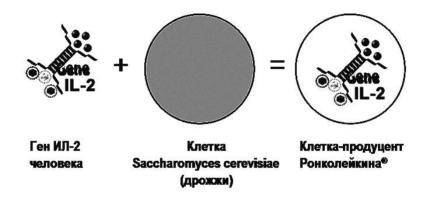
функциональных субпопуляций лимфоцитов: зрелых Т-лимфоцитов (CD3+), цитотоксических лимфоцитов (CD8+), естественных киллерных клеток (CD16+CD56+), Т-лимфоцитов-хелперов (CD4+), вырабатывающих интерлейкин-2 (ИЛ-2) как фактор роста лимфоцитов. Это приводит к недостаточности клеточных механизмов врождённого и адаптивного иммунного ответа у новорожденных и подчеркивает необходимость применения патогенетически обоснованных способов иммунокоррекции при регистрации абсолютной лимфопении.

Рекомбинантные цитокины представляют собой современные биотехнологические продукты — генно-инженерные аналоги эндогенных цитокинов, которые обладают как замещающими, так и индуктивными (регуляторными) эффектами.

Говоря о преимуществах цитокиновых препаратов, по сравнению с другими иммуномодуляторами, следует отметить, в первую очередь, что при использовании рекомбинантных цитокинов возможно точное прогнозирование и контроль иммунного эффекта, выраженность иммунотерапевтического эффекта зависит от применяемой дозы цитокинового препарата, высокая иммунотропная активность цитокинов достигается при использовании небольших терапевтических доз.

В патогенезе неонатального сепсиса важную роль играет нарушение функций различных субпопуляций лимфоцитов так же, как и уменьшение их абсолютного количества. Лимфопения сопровождается значительным снижением выработки цитокинов Т-лимфоцитами, в первую очередь, факторов роста самих лимфоцитов.

Применение рекомбинантного ИЛ-2 человека (препарат Ронколейкин[®]) у взрослых показало, что патогенетическая иммуноориентированная терапия рекомбинантным ИЛ-2 кардинально меняет течение и исход болезни, является эффективным средством предотвращения полиорганной недостаточности и гнойно-септических осложнений, развивающихся на фоне иммунодепрессии, позволяет снизить летальность в отделениях реанимации и интенсивной терапии. Характерно, что положительная клиническая динамика сопровождается снижением процентного содержания Т-лимфоцитов с маркёрами апоптоза среди свежевыделенных лимфоцитов и в культурах мононуклеаров, усилением пролиферативного ответа Т-клеток.


Начиная с 1995 года, препарат Ронколейкин® широко применяется в лечении сепсиса и гнойно-воспалительных заболеваний у взрослых. Хорошая клиническая эффективность препарата продемонстрирована при лечении больных сепсисом, разлитым гнойным перитонитом, острым панкреатитом, а также у пострадавших с тяжёлыми травмами. Накоплен опыт применения препарата при гнойных эндометритах, гнойно-деструктивных заболеваниях бронхолёгочного аппарата, при обширных флегмонах и абсцессах различной локализации, при раневой инфекции и остеомиелитах у взрослых.

Проведенные ранее рандомизированные двойные слепые плацебо-контролируемые исследования у взрослых, а также 15-летний опыт применения препарата Ронколейкин[®] в комплексной терапии неонатальных инфекций показали его высокую клиническую эффективность, выявили детоксикационный и иммунокорригирующий эффекты препарата, позволили значительно снизить летальность в этой группе больных.

Всё вышеизложенное является патогенетическим обоснованием для включения в комплексную терапию неонатальных инфекций, сопровождающихся абсолютной лимфопенией, отечественного препарата рекомбинантного интерлейкина-2 человека — Ронколейкин®.

РОНКОЛЕЙКИН[®]: ФАРМАКОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА

В Научно-производственной компании «БИОТЕХ» были разработаны способы получения и очистки рекомбинантного ИЛ-2 из штамма-продуцента непатогенных пекарских дрожжей-сахаромицетов (рис. 2).

Рис. 2. Схема получения продуцента рИЛ-2 на основе штамма непатогенных дрожжей-сахаромицетов

Способ получения рИЛ-2 в клетках дрожжей и штамм-продуцент были запатентованы. Первый отечественный препарат рекомбинантного дрожжевого ИЛ-2 человека получил торговое название Ронколейкин[®]. Препарат Ронколейкин[®] в дальнейшем прошёл все необходимые стадии доклинических и клинических испытаний, был зарегистрирован в Российской Федерации и разрешён для медицинского применения и промышленного выпуска Приказом Министерства здравоохранения и медицинской промышленности Российской Федерации № 249 от 31 августа 1995 г. С 6 февраля 2008 года препарат разрёшен к применению в педиатрической практике и в неонатологии. Важно отметить, что отечественный препарат рИЛ-2 превосходит по ряду

показателей зарубежные аналоги рИЛ-2 [Proleukin или Aldesleukin (Chiron/Cetus, США), Тесеleukin (F. Hoffman-LaRoche ltd., Франция)]. Перечисленные зарубежные препараты ИЛ-2 созданы на основе бактериального продуцента *E. coli*, отличаются от эндогенного ИЛ-2 по аминокислотной последовательности (т. е. являются белками-мутечнами) и характеризуются наличием большого количества побочных эффектов, что значительно ограничивает их клиническое применение.

Препарат Ронколейкин[®], являясь полным структурным и функциональным аналогом эндогенного ИЛ-2, обладает тем же спектром функциональной активности. Препарат получают методами генной инженерии из клеток-продуцентов — рекомбинантного штамма непатогенных пекарских дрожжей вида Saccharomyces cerevisiae, в генетический аппарат которого встроен ген человеческого ИЛ-2. Активная субстанция Ронколейкина[®] — рекомбинантный дрожжевой ИЛ-2 человека — является полипептидом, состоящим из 133 аминокислот с молекулярной массой около 15,4 кДа. Он способен восполнять дефицит ИЛ-2 и воспроизводит его эффекты как одного из ключевых компонентов цитокиновой сети.

КЛИНИЧЕСКИЙ ОПЫТ ПРИМЕНЕНИЯ ПРЕПАРАТА РОНКОЛЕЙКИН® В НЕОНАТОЛОГИИ

Лабораторные критерии, используемые при иммунотерапии препаратом Ронколейкин®

Для принятия решения о включении препарата Ронколейкин[®] в состав комплексной терапии неонатальных инфекций достаточно констатации факта лимфопении по общему анализу крови новорожденных детей. Показанием для назначения препарата являются абсолютная и/или относительная лимфопения (Н. В. Ашиткова, 2008, 2009; М. В. Дегтярёва, 2010; N. V. Ashitkova, 2010; M. V. Degtyareva, 2010).

Для оценки иммунологического эффекта лечения препаратом Ронколейкин[®] лабораторное обследование субпопуляционного состава лимфоцитов следует выполнять через 3-5 дней от момента последнего введения препарата.

Результаты применения препарата Ронколейкин® в комплексном лечении новорожденных детей

Ретроспективный анализ методом случайной выборки 279 историй болезни новорожденных детей, находившихся на лечении в отделениях реанимации и интенсивной терапии новорожденных, хирургии новорожденных и в отделении патологии новорожденных и недоношенных детей Детской городской клинической больницы № 13 им. Н.Ф. Филатова за период с января 2003 по декабрь 2005 года, показал, что при патологии неонатального периода абсолютная лимфопения регистрируется с частотой от 51,6% до 85% (рис. 3).

Рис. 3. Частота развития абсолютной лимфопении при осложнённом течении неонатального периода

При ретроспективном анализе было выявлено, что абсолютная лимфопения является одним из проявлений вторичного иммунодефицита при тяжёлых инфекциях у новорожденных детей. Она статистически значимо чаще регистрируется при инфекционных заболеваниях, чем при неинфекционной патологии, а при генерализованных инфекциях регистрируется чаще, чем при локализованных инфекционных очагах (рис. 3). Развитие абсолютной лимфопении является неблагоприятным прогностическим признаком при патологии неонатального периода.

Критерием абсолютной лимфопении у новорожденных и детей раннего возраста является снижение абсолютного количества лимфоцитов менее $2x10^9$ /л крови по результатам общего клинического анализа крови. В группе детей с летальным исходом абсолютная лимфопения развивалась в 100% [95% ДИ; 72%–100%] случаев, а при благоприятном исходе заболевания она регистрировалась только в 58,6% случаев, различия частот были статистически значимыми (p=0,004).

Неблагоприятная прогностическая значимость лимфопении при тяжёлых неонатальных инфекциях указывает на необходимость разработки новых методов иммунотерапии, направленных на коррекцию количества и функциональных свойств лимфоцитов при данных патологических состояниях.

Впервые препарат Ронколейкин[®] был применён в составе комплексной терапии неонатального сепсиса в 2002-2003 годах на кафедре неонатологии факультета усовершенствования врачей Российского государственного медицинского университета Министерства Здравоохранения Российской Федерации на базе Детской городской клинической больницы № 13 им. Н. Ф. Филатова (Москва) на основании разрешения локального этического комитета.

Наблюдение за 40 новорожденными детьми с тяжёлой бактериальной инфекцией (данные И. Г. Солдатовой с соавт., 2003 г.) показало, что после двукратного внутривенного капельного введения Ронколейкина[®] в дозе 50 000-100 000 МЕ/кг массы тела в сутки с интервалом 72 часа у детей отмечали нормализацию клинического состояния и общего анализа крови, более быстрое купирование очагов инфекции и лабораторных признаков системного воспалительного ответа, восстановление нормального баланса про- и противовоспалительных цитокинов в более короткие сроки по сравнению с контрольной группой детей с сепсисом и лимфопенией, получавших только стандартную базисную комплексную терапию.

Данная работа позволила сделать вывод о безопасности применения препарата Ронколейкин® у новорожденных детей, поскольку при соблюдении описанных выше дозировок, скорости и методов внутривенного введения препарата никаких побочных эффектов терапии препаратом Ронколейкин® не отмечали. В процессе комплексной терапии неонатального сепсиса с использованием Ронколейкина® отмечалось снижение уровня летальности, сокращение сроков пребывания в стационаре и уменьшение затрат на лечение (И. Г. Солдатова, 2003).

С целью изучения клинической и экономической эффективности препарата рекомбинантного интерлейкина-2 человека (Ронколейкин®), применяемого для коррекции абсолютной лимфопении у детей с неонатальными инфекциями, были обследованы и пролечены 145 новорожденных детей различного гестационного возраста. Все дети были разделены на 2 группы в зависимости от назначения препарата Ронколейкин® в комплексной терапии неонатальных инфекций, сопровождающихся абсолютной лимфопенией.

Характеристика групп детей, получавших и не получавших препарат Ронколейкин® в комплексной терапии неонатальных

инфекций, сопровождающихся развитием абсолютной лимфопении, представлена в таблице 2.

Таблица 2. Характеристика групп детей с осложнённым течением неонатального периода и абсолютной лимфопенией, получавших и не получавших препарат Ронколейкин®

Показатель	$\Gamma pynna\ A$ Дети, получавшие Ронколейкин $^{\$}$ (n = 85)	Группа Б Дети, не получавшие Ронколейкин® $(n = 60)$	P (U-test)
Гестационный возраст (недели)	33 [30;39] (25-41)	33 [30;37] (26-40)	0,94
Масса тела (граммы)	1940 [1360;2830] (750-4200)	2000 [1370;2745] (745-4100)	0,93
Длина тела (см)	44 [38;50] (31-56)	43 [38,5;48] (31-55)	0,74
Оценка по шкале Апгар на 1 минуте жизни (баллы)	6 (1-8) [4;7]	6 (1-8) [5;7]	0,93
Оценка по шкале Апгар на 5 минуте жизни (баллы)	7 [6;8] (3-9)	7 [6;7] (3-9)	0,13

В группе А было 23 доношенных и 62 недоношенных новорожденных ребенка. Вес детей при рождении, в среднем, составил 1940 граммов (от 750 г до 4200 г), длина — 44 см (от 31 до 56 см). Распределение детей по массе тела было следующим: менее 1000 грамм — 12 детей, от 1000 до 1499 граммов — 16 детей, от 1500 до 1999 граммов — 18 детей, от 2000 до 2500 граммов — 10 детей, более 2500 граммов — 29 детей. По гестационному возрасту дети распределились следующим образом: 25-31 неделя — 31 ребенок, 32-37 недель — 31 ребенок, 38-41 неделя — 23 ребенка. Оценка по шкале Апгар на 1 минуте жизни составляла, в среднем, 6 баллов (1-8) и на 5 минуте жизни — 7 баллов (3-9).

Мальчиков было 51, девочек — 34. Двоен было 4.

Группу Б составили 60 новорожденных детей, которые по гестационному возрасту распределились следующим образом: 26-31 неделя — 24 ребенка (40%), 32-37 недель — 22 ребенка (36,7%) и 38-41 недели гестации — 14 детей (23,3%). Мальчиков было 37, девочек — 23.

Вес детей при рождении составил, в среднем, 2000 граммов (от 745 г до 4100 г), длина тела 43 см (от 31 до 55 см). Распределение детей по массе тела было следующим: менее 1000 грамм — 6 детей, от 1000 до 1499 граммов — 13 детей, от 1500 до 1999 граммов — 10 детей, от 2000 до 2500 граммов — 11 детей, более 2500 граммов — 20 детей. Оценка по шкале Апгар на 1 минуте жизни составляла, в среднем, 6 баллов (1-8 баллов) и на 5 минуте жизни — 7 баллов (3-9 баллов).

Состояние при рождении расценивалось как тяжёлое: в *группе* $A \longrightarrow y$ 53 детей (62,4%) и в *группе* $B \longrightarrow y$ 42 детей (70%). Тяжесть состояния была обусловлена наличием дыхательной недостаточности II-III степени, недостаточности кровообращения, нарушениями неврологического статуса. Всем этим детям в родильном зале был оказан полный комплекс первичной реанимационной помощи в соответствии с приказом Минздрава РФ № 372 от 28.12.95 г. С первых минут жизни этим проводился непрерывный мониторинг жизненно важных функций организма, и осуществлялась интенсивная терапия.

Состояние в родильном зале было расценено как удовлетворительное: в группе A — у 32 детей (37,6%) и в группе B — у 18 детей (30%). Однако в течение последующих нескольких суток наблюдения их состояние ухудшилось за счёт нарастания дыхательной недостаточности, неврологической симптоматики и/или появления признаков инфекционного токсикоза.

Распределение детей по основным клиническим диагнозам в группах $A\ u\ B$ было сопоставимо (таблица 3).

Таблица 3. Распределение детей с абсолютной лимфопенией, получавших и не получавших препарат Ронколейкин[®], по основным клиническим диагнозам

Клинический диагноз	<i>Группа А</i> Дети, получавшие Ронколейкин® (n = 85)	Γ руппа E Дети, не получавшие Ронколейкин® $(n = 60)$
Неонатальный сепсис	35 (41,2%)	25 (41,7%)
Генерализованные вирусные инфекции	8 (9,4%)	8 (13,3%)
Локализованные бактериальные инфекции	42 (49,4%)	27 (45%)

В *группе А* по основным клиническим диагнозам дети данной группы распределились следующим образом: «неонатальный сепсис» был основным диагнозом у 35 детей, генерализованные вирусные инфекции — у 8 детей, локализованные бактериальные инфекции были документированы у 42 новорожденных.

В группе E основным клиническим диагнозом у 25 детей из 60 (41,7%) был «неонатальный сепсис», у 8 детей (13,3%) — генерализованные вирусно-бактериальные инфекции, а 27 у новорожденных детей (45%) — локализованные бактериальные инфекции.

Заболевания, диагностируемые по клинико-лабораторным признакам, распределились по группам следующим образом (таблица 4):

— в группе А пневмония была диагностирована у 64 новорожденных детей, энтероколит — у 36 детей, менингоэнцефалит был документирован у 4 детей, инфекция мочевыводящих путей отмечалась у 7 детей, гнойный конъюнктивит — у 4 детей, омфа-

лит и флебит пупочной вены — у 8 детей, кандидоз кожи и слизистых оболочек был выявлен у 13 детей;

— в группе Б пневмония была диагностирована у 51 новорожденного ребенка, энтероколит — у 27 детей, менингоэнцефалит был документирован у 1 ребенка, инфекция мочевыводящих путей отмечалась у 5 детей, гнойный конъюнктивит — у 6 детей, омфалит и/или флебит пупочной вены — у 6 новорожденных, кандидоз кожи и слизистых оболочек был документирован у 7 детей данной группы.

Таблица 4. Заболевания, диагностированные в группах детей с абсолютной лимфопенией, получавших и не получавших препарат Ронколейкин®

Заболевания	$\Gamma pynna\ A$ Дети, получавшие Ронколейкин $^{\otimes}$ (n = 85)	<i>Группа Б</i> Дети, не получавшие Ронколейкин® (n = 60)
Пневмония	64 (75,3%)	51 (85%)
Энтероколит	36 (42,4%)	27 (45%)
Менингоэнцефалит	4 (4,7%)	1 (1,7%)
Инфекции мочевыводящих путей	7 (8,2%)	5 (8,3%)
Гнойный конъюнктивит	4 (4,7%)	6 (10%)
Омфалит и флебит пупочной вены	8 (9,4%)	6 (10%)
Кандидоз кожи и слизистых	13 (15,3%)	7 (11,7%)

Микробиологическое исследование крови до начала терапии выявило наличие следующей микрофлоры (таблица 5):

— в *группе А* положительный посев крови выявлен у 33 новорожденных, в 18 гемокультурах из 33 присутствовала грамположи-

тельная флора, в 8 гемокультурах — грамотрицательная, в трёх — рост смешанной (грамотрицательной и грамположительной) микрофлоры; в 5 гемокультурах был отмечен рост грибов рода *Candida*, причем в 4-х случаях — изолированный рост грибковой флоры, а в одном — в ассоциации с грамотрицательной и грамположительной микрофлорой;

— в *группе Б* положительный результат гемокультуры был зарегистрирован у 14 из 60 новорожденных, в 11 гемокультурах из 14 был выявлен рост грамположительной флоры, в 2 гемокультурах — грамотрицательной, а в одной гемокультуре был отмечен рост грибов рода *Candida*.

Таблица 5. Микробиологическое исследование крови в группах детей с абсолютной лимфопенией до начала терапии

	Положительный посев крови			
Характеристика микрофлоры				
	33 из 85 (41,2%)	14 из 60 (23,3%)		
Грамположительная микрофлора	18 из 33 (54,5%)	11 из 14 (78,6%)		
Грамотрицательная микрофлора	8 из 33 (22,9%)	2 из 14 (14,3%)		
Смешанная микрофлора	3 из 33 (9,1%)	-		
Грибы рода Candida	5 из 33 (15,2%)	1 из 14 (7,1%)		

Обнаружение вирусной инфекции с использованием метода полимеразной цепной реакции (ПЦР) показало, что в группе A положительный результат обнаружения вируса простого герпеса 1-го типа (ВПГ1) в крови и моче был получен у 10 больных детей из 85, вируса цитомегалии (ЦМВ) — у 14 детей из 85 (таблица 6).

Таблица 6. Оценка вирусной нагрузки методом полимеразной цепной реакции в группах детей с абсолютной лимфопенией до начала терапии

Вирусная инфекция	Группа А Дети, получавшие Ронколейкин® (n=85)	<i>Группа Б</i> Дети, не получавшие Ронколейкин [®] (n=60)
Вирус простого герпеса (ВПГ1)	10 из 85 (11,8%)	4 из 60 (6,6%)
Вирус цитомегалии (ЦМВ)	14 из 85 (16,5%)	8 из 60 (13,3%)

У детей группы сравнения (*группа Б*) положительный результат обнаружения ВПГ1 в крови и моче методом ПЦР был получен у 4 больных детей из 60 (6.6%), ЦМВ — у 8 детей из 60 (13.3%) (таблица 6).

Респираторная поддержка посредством ИВЛ в *группе А* требовалась 52 детям из 85 (61,2%), 5 детей (5,9%) получали респираторную поддержку при помощи назального СРАР, 7 детей (8,2%) оксигенировались дополнительно при помощи кислородной палатки. При этом 21 ребенок (24,7%) находился на самостоятельном дыхании и в дополнительной оксигенации не нуждался.

В *группе* Б 56 из 60 детей (93,3%) находились на ИВЛ, 1 ребенок (1,7%) получал респираторную поддержку при помощи назального СРАР, 3 ребенка (5%) оксигенировались дополнительно при помощи кислородной палатки.

Абсолютные показания к хирургическому вмешательству имели 26 детей из 85 (30,6%, *группа A*) и 10 детей из 60 (16,7%, *группа Б*).

В *группе А* 9 из 26 детей (34,6%) были прооперированы по поводу различных врождённых пороков развития органов ЖКТ (болезнь Гиршпрунга, стеноз или атрезия пищевода, атрезия тонкой кишки,

ануса и др.). 9 детей (34,6%) перенесли операции по поводу перфорации кишечника на фоне язвенно-некротизирующего энтероколита (ЯНЭК). 4 ребенка (15,4%) были прооперированы по поводу диафрагмальной грыжи. 2 ребенка (7,8%) перенесли операции на брюшной полости по поводу инфильтратов брюшной полости и гнойного перитонита на фоне генерализованного септического процесса. 1 ребенок (3,8%) прооперирован по поводу врождённого хилоторакса. 1 ребенок (3,8%) перенес множественные операции по поводу полиоссальной формы остеомиелита.

В группе Б основным показанием к операции у 6 из 10 детей (60%) были различные врожденные пороки развития органов ЖКТ (болезнь Гиршпрунга, стеноз или атрезия пищевода, атрезия тонкой кишки, ануса и др.). 4 ребенка (40%) были прооперированы по поводу ЯНЭК, который осложнился кишечной непроходимостью или перфорацией кишечника.

Несмотря на проводимую комплексную терапию, состояние детей оставалось тяжёлым, не было отмечено положительной динамики. У всех детей была отмечена абсолютная лимфопения по результатам общего анализа крови.

При этом в группе A у 32 детей из 85 (37,6%) она зарегистрирована в одном анализе, а у 53 детей (62,4%) была документирована в нескольких анализах крови в динамике. Всем детям основной группы (группа A) был назначен Ронколейкин® на фоне комплексной базисной терапии. Средний возраст детей данной группы на момент получения первой дозы Ронколейкина® составил 21 ± 2 суток жизни.

В группу сравнения (группа Б) дети включались сразу же после выявления абсолютной лимфопении по результатам об-

щего анализа крови. Средний возраст детей этой группы на момент обнаружения абсолютной лимфопении составил 8±1 суток жизни. Лечение детей группы сравнения включало комплексную базисную терапию.

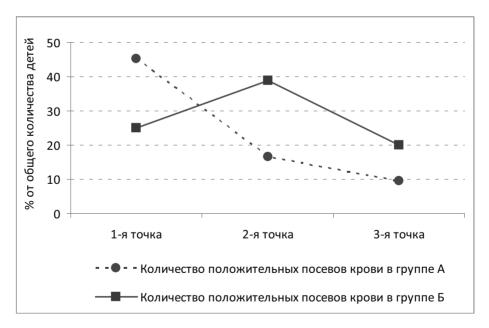
Основная группа и группа сравнения были сопоставимы по количеству детей, имевших однократную или стойкую абсолютную лимфопению.

Анализ клинической эффективности препарата Ронколейкин[®] при неонатальных инфекционных заболеваниях, осложнившихся развитием абсолютной лимфопении

Критерием абсолютной лимфопении у новорожденных детей является количество лимфоцитов в периферической крови менее 3×10^9 /л на первой неделе жизни и менее 2×10^9 /л после 7-х суток жизни. Препарат Ронколейкин® разводили изотоническим раствором натрия хлорида (0.9%) из расчёта 5-10 мл/кг в сутки в зависимости от особенностей водно-электролитного обмена ребенка. Доза препарата Ронколейкин® для внутривенного введения вычислялась из расчета 50000-100000 МЕ/кг массы тела в сутки. Препарат Ронколейкин® вводили внутривенно капельно с использованием инфузионного насоса в течение 2 часов со скоростью не более 6 мл/час 1 раз в сутки двукратно с интервалом 72 часа.

При анализе клинической эффективности препарата Ронколейкин[®] при неонатальных инфекционных заболеваниях, осложнившихся развитием абсолютной лимфопении, было выявлено, что сразу после завершения курса иммунотерапии в клиническом состоянии детей $\it групn~A~u~E~$ были зарегистрированы статистически значимые различия. После окончания курса препарата Ронколейкин[®] количество детей, имевших пневмонию, нуждавшихся в проведении ИВЛ и полного парентерального питания, было статистически значимо меньше по сравнению с детьми, получившими только базисную терапию (таблица 7).

Таблица 7. Сравнение клинических показателей у детей с неонатальными инфекциями, сопровождающимися лимфопенией, получавших и не получавших препарат Ронколейкин®


Показатель клинического состояния	<i>Группа А</i> Базисная терапия + Ронколейкин [®] n= 85		<i>Групп</i> Базис терап n= 6	Р (ТКФ)	
	n	%	n	%	
Пневмония	31	37,3	47	79,7	<0,001
ИВЛ	29	34,9	38	64,4	<0,001
Полное парентеральное питание	12	14,4	18	30,5	0,031
Полное энтеральное питание	12	14,4	2	3,4	0,048

Санация крови достоверно быстрее возникала у детей, получавших Ронколейкин (группа A) по сравнению с детьми, лечение которых включало только базисную терапию. Более того, в группе сравнения (группа B) через неделю от включения в исследование отмечалось увеличение доли детей с документированной бактериемией (положительный посев крови) по сравнению с долей детей этой группы, имевших позитивную гемокультуру в 1-й точке (таблица 8, рисунок 4).

Таблица 8. Количество детей, имевших положительный посев крови среди новорожденных, получавших и не получавших Ронколейкин®

	Количество положитель		
Сроки исследования	<i>Группа А</i> Базисная терапия + Ронколейкин [®] (n= 85)	Группа Б Базисная терапия (n= 60)	Р (ТКФ)
1-я точка	33/73 (45,2%)	14/56 (25%)	0,026
2-я точка	10/60 (16,7%)	19/49 (38,8%)	0,016
3-я точка	2/21 (9,5%)	4/20 (20%)	0,4

Примечание: 1-я точка — день обнаружения абсолютной лимфопении в общем анализе крови, 2-я точка — через 6-7 суток, 3-я точка — через 29 суток после регистрации абсолютной лимфопении.

Рис. 4. Доля детей, имевших положительный посев крови в группах новорожденных, получавших и не получавших Ронколейкин®

Анализ показателей гемограммы после окончания курса препарата Ронколейкин® показал, что абсолютное и относительное количество лимфоцитов становилось статистически значимо более высоким по сравнению с детьми, получавшими базисную терапию (U-test). У детей группы A отмечалось статистически значимое уменьшение нейтрофилёза и относительного количества сегментоядерных гранулоцитов по сравнению с группой E, что свидетельствовало об уменьшении интенсивности воспаления (таблица 9).

Таблица 9. Показатели гемограммы у детей с неонатальными инфекциями, сопровождающимися лимфопенией, получавших и не получавших препарат Ронколейкин®

Параметр	<i>Группа А</i> Базисная терапия + Ронколейкин [®] (n= 85)	Группа Б Базисная терапия (n= 60)	P (U-test)
	Me [LQ; UQ]	Me [LQ; UQ]	
Нейтрофилы (%)	50 [41; 67]	59 [50; 70]	0,004
Сегментоядерные гранулоциты (%)	46 [39; 59]	55 [45; 64]	0,007
Лимфоциты (%)	37 [25; 44]	25 [16; 32]	<0,001
Лимфоциты (×109/л)	3,69 [2,62; 5,49]	3,12 [1,77; 4,6]	0,011

Определение уровня провоспалительного цитокина ИЛ-8 у детей сразу после окончания курса иммунотерапии выявило статистически значимые различия, что свидетельствует об уменьшении интенсивности системного воспалительного ответа после включения препарата Ронколейкин[®] в комплексную терапию неонатальных инфекций, сопровождающихся абсолютной лимфопенией.

Таблица 10. Уровни ИЛ-8 в сыворотке крови детей с неонатальными инфекциями, сопровождающимися лимфопенией, получавших и не получавших препарат Ронколейкин[®]

Параметр	<i>Группа А</i> Базисная терапия + Ронколейкин® (n=27)	<i>Группа Б</i> Базисная терапия (n=39)	P (U-test)	
	Me [LQ; UQ]	Me [LQ; UQ]		
Уровень ИЛ-8 (пг/мл)	34,8 [18,9; 94,8]	114 [42; 300]	0,0024	

Уровень ИЛ-8 оставался достоверно более высоким в группе детей, получавших только базисную терапию (таблица 10), что может указывать на сохранение у них системной воспалительной реакции на фоне сохраняющихся очагов локализованной инфекции и бактериемии.

Анализ показателей иммунограммы после окончания курса препарата Ронколейкин[®] позволил установить, что в группе A статистически значимо выросло относительные количества зрелых Т-лимфоцитов (CD3+), цитотоксических Т-лимфоцитов (CD8+), относительные и абсолютные количества естественных киллерных клеток (CD16+CD56+) по сравнению с таковыми значениями в группе E (таблица 11).

Таблица 11. Показатели иммунограммы у детей с гнойно-септической патологией после лечения Ронколейкином[®] и в контрольной группе

Параметр	Базисная терапия + Ронколейкин®		Базисная терапия		P
	N	Me [LQ; UQ]	N	Me [LQ; UQ]	(ТКФ)
CD3+, %	13	63 [61; 70]	29	54 [46; 61]	0,006
CD8+, %	18	22 [16; 28]	29	15 [10; 18]	0,002
CD16+CD56+, %	18	12 [5; 17]	29	4 [3; 6]	< 0,001
CD16+CD56+, aбс.	18	18 0,31 [0,18; 0,81]		0,16 [0,08; 0,32]	< 0,001

Сравнение длительности пребывания в ОРИТН и ОПН детей, получавших и не получавших в комплексной терапии иммуномодулирующей терапии, позволило выявить статистически значимо меньшую длительность госпитализации в ОПН детей с неонатальными инфекциями, сопровождающимися лимфопенией, в случае применения препарата Ронколейкин® (таблица 12).

Таблица 12. Длительность госпитализации в ОРИТН и ОПН детей с неонатальными инфекциями, сопровождающимися лимфопенией, получивших и не получивших препарат Ронколейкин®

Длительность госпитализации	<i>Группа А</i> Базисная терапия + Ронколейкин® (n=85)	Группа Б Базисная терапия (n=60)	P U-test
	Me [LQ; UQ]	Me [LQ; UQ]	
В ОРИТН (койко-дни)	16 [12; 18]	17 [12; 20]	0,811
В ОПН (койко-дни)	26 [18; 36]	31 [26; 55]	0,015

Определение летальности в течение 28 суток, следующих за введением препарата Ронколейкин®, проводили в соответствии с международными критериями оценки выживаемости при исследовании эффективности препаратов в клинической практике. Показатель общей летальности в группе А составил 8,2% (7/85), а в группе Б — 20% (12/60) (р=0,047, ТКФ;. OR=0,36 [0,13; 0,98]; RR=0,41 [0,17; 0,98]; NNT=9 [4; 214]). При этом достоверно меньшая летальность установлена в случае применения препарата Ронколейкин® для детей с абсолютной лимфопенией, не имевших показаний к хирургическому лечению, так и для детей, перенесших хирургические операции (таблица 13).

Таблица 13. Уровни летальности в группах детей с лимфопенией в зависимости от получения иммуномодулирующей терапии Ронколейкином®

	Умерло детей		P
Группы детей с абсолютной лимфопенией	Базисная терапия + Ронколейкин® (группа A) n= 85	Базисная терапия (группа Б) n= 60	(ТКФ)
Дети с сепсисом, не имев- шие показаний к хирурги- ческому лечению	1 из 60 (1,7%)	7 из 50 (14,0%)	0,02
Дети в послеоперацион- ном периоде	6 из 25 (24%)	5 из 10 (50%)	0,22
Всего	7 из 85 (8,2%)	12 из 60 (20%)	0,047

Было установлено, что все 19 умерших детей (7 умерших детей группы A и 12 умерших детей группы B) имели стойкую абсолютную лимфопению. Среди детей обеих групп, имевших однократный эпизод абсолютной лимфопении, летальных исходов не отмечалось.

Количество детей, выписанных домой в удовлетворительном состоянии до 29 суток от момента регистрации абсолютной лимфопении и по завершении лечения, при включении в базисную терапию Ронколейкина[®] (группа А) достоверно превышало аналогичный показатель для группы Б, где лечение состояло только из базисной терапии (таблица 14).

Таблица 14. Количество детей, выписанных домой в удовлетворительном состоянии до 29 суток от момента регистрации абсолютной лимфопении

Группы детей	Дети, выписанные домой до 29 суток	Р (ТКФ)	
<i>Группа А</i> Базисная терапия	10 из 60 (16,7%)	0.024	
<i>Группа Б</i> Базисная терапия + Ронколейкин [®]	41 из 85 (49,4%)	0,024	

Таким образом, включение препарата Ронколейкин[®] в комплексную терапию тяжёлой инфекционной патологии у детей при развитии абсолютной лимфопении является патогенетически обоснованным, безопасным и эффективным.

О высокой клинической эффективности препарата Ронколейкин® свидетельствуют снижение показателя летальности, сокращение длительности госпитализации детей в стационаре, сокращение длительности санации локализованных очагов инфекции и крови, нормализация показателей гемограммы, уменьшение интенсивности системного воспалительного ответа, которые статистически значимо отличались от таковых у детей, не получавших терапию препаратом Ронколейкин®. Применение иммуномодулирующей терапии способствует восстановлению субпопуляционного состава лимфоцитов, играющих важную роль в развитии врождённых и адаптивных механизмов иммунного ответа и элиминации возбудителей инфекций.

Ни в одном случае *не было зарегистрировано побочных эффектов* от введения препарата Ронколейкин $^{\text{®}}$ ни в виде гемодинамических нарушений, ни в виде аллергических или пирогенных реакций.

Опыт клинического применения препарата Ронколейкин[®] для лечения внутриутробных и врождённых пневмоний (ВУП) бактериального генеза у новорожденных накоплен в **Кубанском государственном медицинском университете** г. Краснодара (Никулин Л. А. с соавт., 2001; Каюмова Д. А., 2004, 2006). Ронколейкин[®] применяли в сочетании с антибактериальной терапией.

В проведённом исследовании внутриутробная пневмония была диагностирована в первые сутки жизни на основании клинических и рентгенологических данных. Под наблюдением находились 73 доношенных новорожденных с ВУП, которые были разделены методом

случайной выборки на две группы: І группа — n=32, ІІ группа — n=41. Все дети получали комплексное базисное лечение, включавшее дыхательную, антибактериальную, инфузионную и посиндромную терапию. В комплексную терапию детей І группы был включён Ронколейкин[®]. Контрольную группу составили 15 здоровых новорожденных (Каюмова Д. А., 2004, 2006).

Новорожденным детям I группы вводили 0,1 мг Ронколейкина®, растворённого в 1 мл 0,9% раствора NaCl, эндотрахеально через интубационную трубку струйно, дробно, по 0,5 мл при изменении положения тела сначала в правый, затем в левый бронх. Одновременно препарат вводили внутривенно в дозе 0,1 мг на 0,9% растворе NaCl в объёме 20 мл с добавлением 1 мл 5% сывороточного альбумина. Указанный объём вводили со скоростью 5 мл/ч так, чтобы общее время инфузии составило не менее 4 часов. Процедуру производили сразу при поступлении (в 1 сутки) и через 48 часов.

В условиях двухмесячного мониторинга за детьми отмечалось полная нормализация гематологических и иммунологических параметров в группе новорожденных, у которых в комплексном лечении внутриутробной пневмонии использовали системное и эндотрахеальное введение Ронколейкина®, в то время как в группе детей, находившихся на современной традиционной терапии, отмечалась нейтро- и лимфопения, сохранялись повышенные концентрации HLA-DR+ и CD16+ лимфоцитов, оставался низким коэффициент мобилизации в стимулированном NBT-тесте, что свидетельствовало о наличии антигенемии и формировании вторичных сочетанных дисфункциональных нарушений иммунной системы.

Таблица 15. Сравнительная эффективность способов лечения новорожденных с внутриутробной пневмонией

	Эффективность лечения по группам (M+m, p)		
Показатель	<i>I группа</i> (n=32) Базисная терапия + Ронколейкин [®]	<i>II группа</i> (n=41) Базисная терапия	
Длительность ИВЛ, сут.	2,3 ± 0,2 *	6,1±1,4	
Длительность антибактериальной терапии, сут.	14,4 ±2,3 **	$22,3 \pm 5,3$	
Длительность инфузионной терапии, сут.	9,6 ± 1,2 **	14,2 ±0,7	
Нормализация рентгенологической картины, сут.	14,7 ±2,1 *	19,6 ± 6.1	
Начало стабильной прибавки массы тела, сут.	5,1 ±1,1 *	$7,8 \pm 0.9$	
Количество курсов АБ терапии	1.1 ±0,1 ***	$2,6 \pm 0,3$	
Пребывание в ОРИТ, сут.	5,5 ± 0,4 **	$8,3 \pm 0,7$	
Длительность пребывания в стационаре, сут.	17,3 ± 1,7 **	23,4 ±3,5	
Летальность, % (n)	0,32 (1)	2,05 (5)	
Хронизация процесса, %, (п)	0	26,8 (11)	
Заболеваемость в катамнезе, %	21,8	80,5	

Примечание: * — достоверность различий между параметрами p<0,05;
** — достоверность различий между параметрами p<0,01

Использование сочетанного применения Ронколейкина[®] в комплексном лечении внутриутробной пневмони, привело в сравнении

с современной базисной терапией к сокращению продолжительности ИВЛ в 3 раза, длительности и количества курсов антибактериальной терапии на 35% и 50%, соответственно, снижению дозы внутривенных иммуноглобулинов на 75%, сокращению времени пребывания детей в отделении реанимации и интенсивной терапии на 33%, уменьшению сроков пребывания в стационаре, в среднем, на 6 суток, снижению летальности в 6 раз и заболеваемости в катамнезе в 3,7 раза, что имеет значительное экономическое и социальное значение (таблица 15), (Каюмова Д. А., 2004).

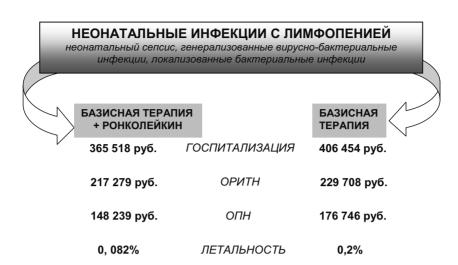
Аналогичная схема терапии была применена и для лечения внутриутробной пневмонии у недоношенных новорожденных (Л. А. Никулин с соавт., 2001).

Проведённое исследование показало, что применение Ронколейкина[®] в лечении врождённой пневмонии бактериального генеза является адекватным и эффективным средством стимулирующей и заместительной терапии.

ОЦЕНКА ЗАТРАТ НА ЛЕЧЕНИЕ НЕОНАТАЛЬНЫХ ИНФЕКЦИЙ

Для проведения данного исследования были проанализированы затраты на ведение пациентов с неонатальными инфекциями в ОРИТН и ОПН. Оценка данных затрат включала в себя затраты на медикаментозную терапию, затраты на «гостиничные услуги», мягкий инвентарь, на расходные материалы и затраты на кислород. Для оценки стоимости медикаментозной терапии в группах сравнения оценивалась базисная терапия и дополнительно затраты на иммуномодулирующий препарат Ронколейкин[®].

Таблица 16. Стоимость лечения одного пациента с неонатальными инфекциями, сопровождающимися лимфопенией, в зависимости от включения в комплексную терапию препарата Ронколейкин®


	Стоимость (руб.)				
Схема лечения	базисной терапии	иммунных препаратов	всего курса терапии	базисной терапии в ОРИТН	терапии в ОПН
Базисная терапия + Ронколейкин®	145 334	1 084	146 418	88 479	56 855
Базисная терапия	161 798	-	161 798	94 008	67 789

Был проведен расчёт стоимости ведения детей в ОРИТН и ОПН, получавших и не получавших в комплексной терапии неонатальных инфекций препарат Ронколейкин® (таблица 16).

При проведении анализа затраты — выгода (cost — benefit analysis) применение медицинской технологии с включением иммуномодулирующего препарата Ронколейкин[®] в комплексную терапию неонатальных инфекций, сопровождающихся лимфопенией, позволяет снизить расходы на ведение одного пациента на 40 936 руб.

С учётом результатов оценки косвенных затрат (недопроизведённый вклад в ВВП, выплаты пенсий по инвалидности) был произведен расчёт влияния иммуномодулирующей терапии препаратом Ронколейкин[®] в комплексной терапии неонатальных инфекций, сопровождающихся лимфопенией, на суммарные (прямые и косвенные) потери от инфекционных заболеваний (таблица 17).

Назначение иммуномодулирующего препарата Ронколейкин[®] в комплексной терапии неонатальных инфекций демонстрирует достоверное снижение летальности, длительности пребывания в стационаре, сокращение суммарных затрат на ведение детей с лимфопенией в ОРИТН и ОПН на 10% (рис. 5).

Рис. 5. Клинико-экономическая эффективность лечения неонатальных инфекций с лимфопенией у детей в стационаре в зависимости от включения в терапию препарата Ронколейкин®

Таблица 17. Косвенные затраты на ведение одного пациента с неонатальными инфекциями с лимфопенией в зависимости от включения в комплексную базисную терапию препарата Ронколейкин®

Параметр	Экономические затраты (руб.)		
	Базисная терапия + Ронколейкин®	Базисная терапия	
Затраты на выплату пенсий по инвалидности	588 829	588 829	
Недопроизведённый вклад в ВВП	2 253 478	4 648 948	

Предотвращённый недопроизведённый вклад в ВВП: **2 395 470 руб.** (4 648 948 руб. – 2 253 478 руб.)

Предотвращённый ущерб недопроизведённого вклада в ВВП составляет 2 395 470 руб. на одного пациента с неонатальными ин-

фекциями с лимфопенией, получившего в комплексной терапии препарат Ронколейкин[®].

Общие потери, связанные с неонатальными инфекциями с лимфопенией представляют собой сумму прямых и косвенных затрат (таблица 18).

Таблица 18. Экономические затраты на ведение одного пациента с неонатальными инфекциями с лимфопенией с учётом прямых и косвенных затрат в зависимости от включения в комплексную базисную терапию иммуномодулирующего препарата Ронколейкин®

Параметр	Экономические затраты (руб.)		
1.500	Базисная терапия + Ронколейкин®	Базисная терапия	
Стоимость стационарного лечения	365 518	406 454	
Затраты на выплату пенсий по инвалидности	588 829	588 829	
Недопроизведённый вклад в ВВП	2 253 478	4 648 948	
Итоговая сумма затрат	3 207 825	5 644 231	
Размер предотвращённого ущерба	2 436 406	-	

Предотвращённый ущерб от неонатальных инфекций с учётом прямых затрат и косвенных потерь с применением препарата Ронколейкин[®] в комплексной терапии неонатальных инфекций, сопровождающихся лимфопенией, составляет 2 436 406 руб.

Применение иммуномодулирующего препарата Ронколейкин® у новорожденных детей может расцениваться как затратно-сберегающая (cost-saving) технология, что позволяет рекомендовать её для более широкого применения в комплексной терапии неонатальных инфекций.

Результаты клинических испытаний показали, что применение препарата Ронколейкин[®] позволяет повысить эффективность лечения, является безопасным и экономически оправдано.

Таким образом, разработка подходов по оптимизации лечения и снижению стоимости ведения детей с неонатальными инфекциями, с одной стороны, и внедрение различных методов клинико-экономического анализа препаратов, с другой, имеют большое практическое значение как с позиции снижения суммарных затрат системы здравоохранения на лечение инфекционных заболеваний, так и с точки зрения совершенствования организации оказания неонатологической медицинской помощи и рентабельности системы здравоохранения в целом.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

При выявлении абсолютной лимфопении (менее $2\times10^9/\pi$) у детей с неонатальными инфекциями показано назначение рекомбинантного интерлейкина-2 человека (Ронколейкин®) в дозе 50000-100000 МЕ/кг массы тела 1 раз в сутки двукратно с интервалом 48-72 часа.

ЛИТЕРАТУРА

- 1. Ашиткова Н.В. Оценка клинической эффективности Ронколейкина у новорожденных детей с осложнённым течением неонатального периода и абсолютной лимфопенией. / Н.В. Ашиткова, И.Г. Солдатова, М.В. Дегтярёва, Н.Н. Володин // Вопросы практической педиатрии. 2008. Том 3, № 5. С. 9.
- 2. Ашиткова Н.В. Диагностическое и прогностическое значение лимфопенических состояний у новорожденных детей с осложнённым течением неонатального периода. / Н.В. Ашиткова, М.В. Дегтярёва, Н.Н. Володин, И.Г. Солдатова и др. // Педиатрия. − 2009. − Том 87, № 1. − С. 49-54.
- 3. Ашиткова Н.В. Эффективность препарата рекомбинантного интерлейкина-2 человека в терапии неонатального сепсиса и тяжёлых неонатальных инфекций. / Н.В. Ашиткова, Н.Н. Володин, М.В. Дегтярёва, И.Г. Солдатова и др. // Педиатрия. 2009. Том 87, № 3. С. 80-86.
- 4. Ашиткова Н.В. Диагностическое и прогностическое значение лимфопении при неонатальных инфекциях. / Н.В. Ашиткова // Автореферат дисс. канд. мед. наук. Москва, 2009. 24 с.
- 5. Борисенко О.В. Клинико-экономический анализ. М., Ньюдиамед, 2008. 778 с.
- 6. Вельтищев Ю.Е., Зелинская Д.И. Детская инвалидность: медицинские и социальные аспекты, меры профилактики. М., Лекция для врачей, 2000. 68 с.
- 7. Володин Н.Н. Особенности иммунологической адаптации у новорожденных детей в норме, при респираторном дистресс-синдроме и при пневмонии бактериальной этиологии. / Н.Н. Володин, М.В. Дегтярева, Д.Н. Дегтярев и др. // Int. J. Immunorehabilitation. 1999. Vol. 1, No 1. P. 82-91.
- 8. Володин Н.Н. Клиническая эффективность иммуномодулирующей терапии Ронколейкином в комплексном лечении неонатального сепсиса. / Н.Н. Володин, М.В. Дегтярёва, И.Г. Солдатова и др. // VII Всеросс. научный форум «Дни иммунологии в Санкт-Петербурге». СПб, 2003. Материалы симп. «Эффективность Ронколейкина (интерлейкина-2) при лечении иммунодефицитов различной этиологии». С. 48-50.
- Володин Н.Н. Ронколейкин[®] в терапии гнойно-септических заболеваний у детей. / Н.Н. Володин, М.В. Дегтярёва, В.И. Гордеев, И.А. Тузанкина, М.Н. Смирнов, И.В. Бабаченко, Т.Б. Аболина, В.В. Погорельчук, Ж.И. Авдеева, Н.В. Ашиткова, С.А. Золотарёва // БИОпрепараты. 2008. № 1 (29). С. 20-26.
- 10. Володин Н.Н. Особенности иммунных нарушений при инфекционных заболеваниях у новорожденных различного гестационного возраста и способы иммунокоррекции. // Н.Н. Володин, М.В. Дегтярёва, И.Г. Солдатова, Н.В. Ашиткова // Научно-практич. конф. «Старые» и «новые» инфекции у детей в современных условиях. Санкт-Петербург, 2011. Материалы. С. 61-73.
- 11. Дегтярева М.В. Комплексное исследование противовоспалительных иммуноцитокинов и функционального состояния лимфоцитов у новорожденных детей в норме и при патологии. / М.В. Дягтерёва // Диссертация ... канд. мед. наук. Москва, 1995. 267 с.

- 12. Дегтярёва М.В. Принципы оценки иммунного статуса и иммунокоррекция у новорожденных детей. / М.В. Дегтярёва, И.Г. Солдатова, Н.Н. Володин // Лекции по педиатрии. 2010. Том 9. Иммунология. С.106-126. / Под ред. В.Ф. Демина, С.О. Ключникова, И.Г. Козлова, А.П. Продеуса РГМУ, Москва, 2010. 320 с.
- 13. Дударева М.В. Патогенетические механизмы иммунной дисфункции у новорожденных с респираторными нарушениями. / М.В. Дударева. // Диссертация ... докт. мед. наук Ростов-на-Дону, 2012. 307 с.
- 14. Иванов Д.О. Клинико-лабораторные варианты течения сепсиса новорожденных. / Д.О. Иванов / Автореферат дисс. ... докт. мед. наук. Санкт-Петербург. 2002. 47 с.
- 15. Касохов Т.Б. Показатели иммунного статуса у новорожденных недоношенных детей с инфекционно-воспалительными заболеваниями. / Т.Б. Касохов, З.А. Цораева, З.С. Мерденова, Л.К. Цораева, А.Н. Шляйхер, В.В. Касохова, А.И. Мазур // Современные проблемы науки и образования. 2016. № 2.
- 16. Каюмова Д.А. Эффективность комплексного лечения новорожденных с внутриутробной пневмонией с использованием рекомбинантного интерлейкина-2 (ронколейкина). / Д,А. Каюмова // Автореферат дисс....канд. мед. наук. Краснодар, 2004. 22 с.
- 17. Каюмова Д.А. Цитокиновый и ферментативный спектр трахеобронхиального аспирата детей с внутриутробными пневмониями в условиях системного и местного лечения Ронколейкином. / Д.А. Каюмова, Р.А. Ханферян, Л.А. Никулин и др. // Цитокины и воспаление. 2005. Том 4, № 2. С. 94.
- 18. Каюмова Д.А. Эффективность комплексного лечения новорожденных с внутриутробной пневмонией с использованием рекомбинантного IL-2 Ронколейкина. / Д.А. Каюмова, Е.В. Боровикова // «Перспективы и пути развития неотложной педиатрии». Ежегодная междисциплинарная научно-практич. конф. стран СНГ. Санкт-Петербург, 2006. Материалы.
- 19. Куликов А.Ю. Теоретические основы нового метода фармакоэкономического анализа: «совместный анализ». / А.Ю. Куликов, М.М. Литвиненко //Фармакоэкономика. 2009. —№ 2. С. 15-19.
- Малюжинская Н.В. Анализ антибиотикочувтвительности и антибиотикорезистентности возбудителей инфекционно-воспалительных заболеваний у новорожденных детей. / Н.В. Малюжинская, И.В. Петрова, Н.С. Селезнева // Современные проблемы науки и образования. — 2018. — № 5.
- 21. Никулин Л.А. Эффективность Ронколейкина в комплексной терапии врождённых пневмоний у недоношенных детей. / Л.А. Никулин, О.В. Боровиков, Л.А. Левченко, Е.В. Боровикова, Р.А. Ханферян // Медицинская иммунология. 2001. Том 3, № 1. С. 95-98.
- 22. Омельяновский В.В. Анализ стоимости болезни проблемы и пути решения. / В.В. Омельяновский, М.В. Авксентьева, Е.В. Деркач // Педиатрическая фармакология: научно-практический журнал Союза педиатров России. − 2011. − Том 8, № 3. − С. 6-12.

- 23. Принципы диагностики иммунной недостаточности и иммунокоррекции у новорожденных с хирургическими заболеваниями. Неонатальная хирургия: монография, глава 9. С. 93-112. / Под ред. Ю.Ф. Исакова, Н.Н. Володина, А.В. Гераськина. Москва, 2011.
- 24. Самсыгина Г.А. Современные подходы к лечению сепсиса новорожденных. / Г.А. Самсыгина // Педиатрия. 2010. Том 89, № 1. С. 109-115.
- 25. Солдатова И.Г. Применение Ронколейкина в комплексной терапии неонатального сепсиса. / И.Г. Солдатова, М.В. Дегтярёва, Н.Н. Володин, Е.А. Гордеева, А.С. Симбирцев, А.М. Ищенко, А.В. Жахов, С.А. Синева // Вопросы гематологии/онкологии и иммунологии в педиатрии. − 2003. − Том 2, № 1. − С. 62-65.
- 26. Солдатова И.Г. Оптимизация оказания медицинской помощи детям с неонатальными инфекциями. / И.Г. Солдатова // Автореферат дисс. ... докт. мед. наук Москва, 2011. 57 с.
- 27. Таболин В.А. Иммунокоррекция при бактериальных инфекциях у новорожденных детей: реальность и перспективы. / В.А. Таболин, Н.Н. Володин, М.В. Дегтярёва, К.К. Бахтикян, Г.А. Асмолова, М.А. Бедианидзе // Intern. J. Immunorehabilitation. 1998. №10. С. 174-181.
- 28. Титов Л.П. Особенности строения, развития и функционирования иммунной системы детского организма. / Л.П. Титов, Е.Ю. Кирильчик, Т.А. Канашкова // Медицинские новости. 2009. №5. С. 7-16.
- 29. Хаертынов Х.С. Современные подходы к лечению неонатального сепсиса. / X.С. Хаертынов, М.А. Сатрутдинов, Е.А. Агафонова // Вестник современной клинической медицины. 2013. Том 6, вып. 6. С. 95.
- 30. Шабалов Н.П., Иванов Д.О., Шабалова Н.Н. Сепсис новорожденных. / Н.П. Шабалов, Д.О. Иванов, Н.Н. Шабалова // Новости фармакотерапии. 2000. Том 7. C. 62 -69.
- 31. Шабалов Н.П. Неонатология: учебное пособие: в 2 т. / Н.П. Шабалов. М: МЕДпресс-информ, 2004. 640 с.
- 32. Яцык Г.В. Сепсис новорожденных. Современные проблемы диагностики и лечения. / Г.В. Яцык, Е.П. Бомбардирова // Практика педиатра. 2009. Февраль. С. 6-9.
- 33. Яцык Г.В. Принципы медикаментозной терапии новорожденных детей. Лекция. / Г.В. Яцык, Н.Д. Одинаева, И.А. Беляева, Е.П. Бомбардирова, Э.И. Тарзян // Педиатрическая фармакология. -2011. Том 8, № 6. С. 50-56.
- 34. Abbas A.K. Reversing IL-2: Biology and therapeutic prospects. / A.K. Abbas, E. Trotta, D.R. Simeonov, A. Marson and J.A. Bluestone // Science Immunology. 2018. Vol. 3. Issue 25.
- 35. Andrews A. Recombinant cytokines as immunological adjuvants. // Immunology and Cell Biology. 2003. V. 71. P. 367 379.
- Ashitkova N.V. Diagnostic and prognostic role of lymphopenia in critically ill newborns in neonatal intensive care unit (NICU). / N.V. Ashitkova, I.G. Soldatova, M.V.

- Degtyareva, N.N. Volodin // The Journal of maternal-fetal & neonatal medicine. 2010. Vol. 23. Suppl. 1. P. 395.
- 37. Belz G., Masson F. Interleukin-2 Tickles T Cell Memory. // Immunity. 2010. Vol. 29. P. 8-12.
- 38. Degtyareva M.V. Efficacy of human interleukin-2 (Roncoleukin) in treatment of severe neonatal bacterial infection complicated with lymphopenia. / M.V. Degtyareva, N.V. Ashitkova, L.L. Pankratyeva, I.G. Soldatova, N.N. Volodin // The Journal of maternal-fetal & neonatal medicine. 2010. Vol. 23. Suppl. 1. P. 639.
- 39. Degtyareva M.V. Indication and efficacy of human recombinant interleukin-2 (Roncoleukin®) / M.V. Degtyareva, N.V. Ashitkova, L.L. Pankratyeva, I.G. Soldatova, N.N. Volodin //Advances in perinatal medicine. Spain. Granada, 2010. Proceedings. P. 1269.
- 40. Degtyareva M.V. Clinical efficacy and cost-effectiveness of human recombinant interleukin-2 in neonatal infections. / M.V. Degtyareva, L.L. Pankratyeva et al. // The Journal of Maternal-Fetal and Neonatal Medicine. June 2012. C.55-56.
- 41. Delanghe J.R. Translational research and biomarkers in neonatal stpsis. / J.R. Delanghe, M.M/ Speeckaert // Clin. Chim. Acta. 2015. Dec. 7; 451. P. 46-64.
- 42. Haque K. Year book of Intensive Care and Emergency Medicine. // In: Vincent J L. Springer. 2007. P. 55-68.
- 43. Hotchkiss R., Osmon S., Chang K., Wagner T., Coopersmith C., Karl I. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways. // J. Immunol. 2005. V. 174. P. 110-118.
- 44. Hotoura E., Giapros V., Kostoula A., Spirou P., Andronikou S. Tracking Changes of Lymphocyte Subsets and Pre-inflammatory Mediators in Full-term Neonates with Suspected or Documented Infection. // <u>Scandinavian Journal of Immunology</u>. 2011. <u>V. 73.</u> <u>P.</u> 250-255.
- 45. Jordan J., Durso M., Butchko A., et al. Evaluating the near-term infant for early onset sepsis: progress and challenges to consider with 16rDNA polymerase chain reaction testing. // J Mol Diagn. − 2006. − V. 8, №3. − P. 357-363.
- 46. Mikhailova A., Belevskaya R., Kalyuzhnaya M., Fonina L., Liashenko V., Petrov R. Myelopeptide-2 recovers interleukin-2 synthesis and interleukin-2 receptor expression in human T lymphocytes depressed by tumor products or measles virus. // J. Immunother. 2006. V. 29. P. 306-312.
- 47. Ng P., Li K., Wong R., Chui K., Wong E., Li G., and Fok T. Proinflammatory and anti-inflammatory cytokine responses in preterm infants with systemic infections. // Arch Dis Child Fetal Neonatal Ed. − 2003. − Vol. 88, №3. − P. 209-213.
- 48. Olejniczak K., Kasprzak A. Biological properties of interleukin 2 and its role in pathogenesis of selected diseases-a review. // Med Sci Monit. 2008. Vol. 14. P. 179-189.
- 49. Rajaratnam J., Marcus J., Flaxman A., Wang H., Levin-Rector A., Dwyer L., Costa M., Lopez A., Murray C. Neonatal, postneonatal, childhood, and under-5 mortality

- for 187 countries, 1970-2010: a systematic analysis of progress towards Millennium Development Goal 4. // <u>Lancet.</u> 2010. Vol. 375. P. 1988-2008.
- 50. Stoll B., Gordon T., Korones S., Shankaran S., Tyson J., Bauer C., et al. Early-onset sepsis in very low birth weight neonates: a report from the National Institute of Child Health and Human Development Neonatal Research Network. // J. Pediatr. 1996. V. 129. P. 72-80.
- 51. Stoll B., Hansen N., Adams-Chapman I., Fanaroff A., Hintz S., Vohr B., et al. Neuro development and growth impairment among extremely low birth-weight infants with neonatal infections. // JAMA. 2004. V. 292. P. 2357-2650.
- 52. Stoll B., Hansen N., Sánchez P., Faix R. et all. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. // Pediatrics. 2011. Vol. 127, №5. P. 817 826.
- 53. Stoll G., Jander S., Schroeter M. Detrimental and beneficial effects of injury-induced inflammation and cytokine expression in the nervous system. // Adv Exp Med Biol. 2002. Vol. 513. P. 87-113.
- 54. Vergnano S., Sharland M., Kazembe P., Mwansambo C., Heath P. Neonatal sepsis: an international perspective. // Arch Dis Child Fetal Neonatal Ed. 2005. Vol. 90. P. 220-224.
- Volodin, N.N. Evidence-based immunotherapeutical approaches in treatment of severe neonatal bacterial infections. / N.N. Volodin, I. G. Soldatova, M.V. Degtyareva // ISEH 37th Annual Scientific Meeting. Boston, MA, USA. Abstract Supplement. Experimental Hematology. 2008. Vol. 36, Suppl. 1 (S1-S99). S91.
- 56. Waldmann T. The IL-2/IL-15 receptor systems: targets for immunotherapy. // <u>J Clin</u> Immunol. 2002. Vol. 22, №2. P. 51-56.

Интерлейкин-2: опыт клинического применения в неонатологии

Пособие для врачей Печать офсетная. Бумага офсетная. Формат 70х90/16 Усл. печ.л. 2,75 Гарнитура Times New Roman Тираж 1000 экз. Заказ №260719/62

Издательство «СИНЭЛ»
Отпечатано в типографии «СИНЭЛ»
194223, г. Санкт-Петербург, ул. Курчатова, д.10
Подписано в печать 26.07.19.